【题目】有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是( )
![]()
A.8B.7C.6D.4
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数,
为直线
的倾斜角),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的直角坐标方程,并求
时直线
的普通方程;
(2)直线
和曲线
交于
、
两点,点
的直角坐标为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)
,若关于x的方程f2(x)﹣af(x)+a﹣a2=0有四个不等的实数根,则a的取值范围是( )
A.
B.(﹣∞,﹣1)∪[1,+∞)
C.(﹣∞,﹣1)∪{1}D.(﹣1,0)∪{1}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是定义在R上的两个周期函数,
的周期为4,
的周期为2,且
是奇函数.当
时,
,
,其中k>0.若在区间(0,9]上,关于x的方程
有8个不同的实数根,则k的取值范围是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
,直线
经过点
,直线
经过点
,直线
直线
,且直线
分别与椭圆
相交于
两点和
两点.
(Ⅰ)若
分别为椭圆
的左、右焦点,且直线
轴,求四边形
的面积;
(Ⅱ)若直线
的斜率存在且不为0,四边形
为平行四边形,求证:
;
(Ⅲ)在(Ⅱ)的条件下,判断四边形
能否为矩形,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:
试销价格 |
|
|
|
|
|
|
产品销量 |
|
|
|
|
|
|
已知变量
且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲
;丙
,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过
,则称该检测数据是“理想数据”,现从检测数据中随机抽取
个,求“理想数据”的个数
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
、
、
都有
,满足
的实数
有且只有3个,给出下述四个结论:①满足题目条件的实数
有且只有2个:②满足题目条件的实数
有且只有2个;③
在
上单调递增;④
的取值范围是
.其中所有正确的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程选讲
在平面直角坐标系中,以原点为极点,以
轴非负半轴为极轴建立极坐标系, 已知曲线
的极坐标方程为
,直线
的极坐标方程为
.
(Ⅰ)写出曲线
和直线
的直角坐标方程;
(Ⅱ)设直线
过点
与曲线
交于不同两点
,
的中点为
,
与
的交点为
,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com