精英家教网 > 高中数学 > 题目详情
已知表示一条直线,表示两个不重合的平面,有以下三个语句:①;②;③.以其中任意两个作为条件,另外一个作为结论,可以得到三个命题,其中正确命题的个数是(  )
A.B.C.D.
B

试题分析:命题①:若,则是正确的命题,如图(1)过直线作一个平面,则由,结合线面平行的性质可知,因为,所以,而,所以由面面垂直的判定可得;命题②:若,则是错误的命题,如图(2),直线可能在平面内;命题③:若,则是错误的命题,如图(3),直线可能在内,如图(4),直线也可能与平行,综上可知,三个命题中只有一个命题是正确的,故选B.
   
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,点上一点.

⑴若点的中点,求证平面
⑵若平面平面,求证.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在四棱锥中, 底面四边形是直角梯形, ,,.

(1)求证:
(2)求直线与底面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形所在的平面与正方形所在的平面相互垂直,的中点.

(1)求证:∥平面
(2)求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,是正方形,平面分别是的中点.

(1)在线段上确定一点,使平面,并给出证明;
(2)证明平面平面,并求出到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,

(Ⅰ)求证:
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正三棱柱ABC-A1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点,则EF与侧棱C1C所成的角的余弦值是(  )
A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两条直线,为两个平面,下列四个命题中正确的是
A.若所成的角相等,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线及平面,下列命题中正确的是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案