精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(2-a)lnx+
1
x
+2ax(a∈R).
(1)求f(x)的单调区间;
(2)若对任意的a∈(-3,-2),任意的x1,x2∈[1,3],恒有ma+(a-2)ln3>|f(x1)-f(x2)|
成立,求实数m的取值范围.
考点:导数在最大值、最小值问题中的应用
专题:函数的性质及应用,导数的综合应用
分析:(1)由已知得f′(x)=
2-a
x
-
1
x2
+2a=
2a(x-
1
2
)(x+
1
a
)
x2
,(x>0),由此利用分类讨论思想和导数性质能求出f(x)的单调区间.
(2)若对任意a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求函数f(x)的最大值和最小值,解不等式,可求实数m的取值范围.
解答: 解:(1)∵f(x)=(2-a)lnx+
1
x
+2ax(a∈R),
∴f′(x)=
2-a
x
-
1
x2
+2a=
2ax2+(2-a)x-1
x2
=
2a(x-
1
2
)(x+
1
a
)
x2
,(x>0)…(6分)
①当
1
2
=-
1
a
,即a=-2时,f'(x)≤0恒成立,
∴f(x)的单调递减区间为(0,+∞);…(7分)
②当
a<0
1
2
<-
1
a
,即-2<a<0时,f(x)的单调递减区间为(0,
1
2
),(-
1
a
,+∞),
f(x)的单调递增区间为(
1
2
,-
1
a
);…(9分)
③当
a<0
1
2
>-
1
a
,即a<-2时,f(x)的单调递减区间为(0,-
1
a
),(
1
2
,+∞),
f(x)的单调递增区间为(-
1
a
1
2
);…(11分)
④当a≥0时,f(x)的单调递增区间为(
1
2
,+∞),f(x)的单调递减区间为(0,
1
2

综上所述:当a<-2时,f(x)的单调递减区间为(0,-
1
a
),(
1
2
,+∞),
f(x)的单调递增区间为(-
1
a
1
2
);
当a=-2时,f(x)的单调递减区间为(0,+∞);
当-2<a<0时,f(x)的单调递减区间为(0,
1
2
),(-
1
a
,+∞),
f(x)的单调递增区间为(
1
2
,-
1
a
);
当a≥0时,f(x)的单调递增区间为(
1
2
,+∞),f(x)的单调递减区间为(0,
1
2
).
(2)由(1)可知,当a∈(-3,-2)时,f(x)在区间[1,3]上单调递减.
当x=1时,f(x)取最大值;当x=3时,f(x)取最小值;
|f(x1)-f(x2)|≤f(1)-f(3)=(1+2a)-[(2-a)ln3+
1
3
+6a]
=
2
3
-4a+(a-2)ln3,
∵(m+ln3)a-ln3>|f(x1)-f(x2)|恒成立,
∴(m+ln3)a-2ln3>
2
3
-4a+(a-2)ln3
整理得ma>
2
3
-4a,∵a<0,∴m<
2
3a
-4恒成立,
∵-3<a<-2,
∴-
13
3
2
3a
-4<-
38
9

∴m≤-
13
3
点评:考查利用导数研究函数的极值、单调性和最值问题,在求函数的单调区间时,体现了分类讨论的思想方法;恒成立问题,转化为函数的最值问题,体现了转化的思想.属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=-x2+2x+3(0≤x≤3)的最大值为m,最小值为n,当角α的终边经过点P(m,n-1)时,求sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
+
1
3
x
n的展开式中偶数项二项式系数和比(1+x)2n展开式中奇数项二项式系数和小120,求:
(Ⅰ)(1+x)2n展开式中二项式系数最大的项;
(Ⅱ)设(
x
+
1
3
x
n展开式中的常数项为p,展开式中所有项系数的和为q,求p+q.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
lnx
x
的图象为曲线C,函数g(x)=
1
2
ax+b的图象为直线l.
(1)求y=f(x)在x=e处的切线方程;
(2)当a=2,b=-3时,求F(x)=f(x)-g(x)的最大值;
(3)设直线l与曲线C的交点的横坐标分别为x1,x2,且x1≠x2,求证:(x1+x2)g(x1+x2)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于区间[a,b](或(a,b)、[a,b)、(a,b]),我们定义|b-a|为该区间的长度,特别地,[a,+∞)和(-∞,b]的区间长度为正无穷大.
(1)关于x的不等式ax2+(2a-1)x-2≤0的解集的区间长度不小于4,求实数a的取值范围;
(2)关于x的不等式(x2-2x-24)[x2-(2m+6)x+(m2+6m)]<0恰好有3个整数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx.
(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(Ⅱ)当a>0时,讨论f(x)在(
1
2
,  2)
的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

在对人们的休闲方式的一次调查中,共调查了120人,其中女性70人,男性50人.女性中有45人主要的休闲方式是看电视,另外25人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)判断性别与休闲方式是否有关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图关于星星的图案构成一个数列{an},an(n∈N*)对应图中星星的个数.

(1)写出a5,a6的值及数列{an}的通项公式;
(2)若数列{
1
an
}的前n项和Sn,求证Sn<2;
(3)若bn=
2n2-9n-11
2n
,对于(2)中的Sn,有cn=Sn•bn,求数列{|cn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:
(1)BC边上的中线AM的长;
(2)∠CAB的平分线AD的长;
(3)cos∠ABC的值.

查看答案和解析>>

同步练习册答案