精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,对称轴为坐标轴,椭圆与直线相切于点

(1)求椭圆的标准方程;

(2)若直线 与椭圆相交于两点( 不是长轴端点),且以为直径的圆过椭圆轴正半轴上的顶点,求证:直线过定点,并求出该定点的坐标.

【答案】(1) ;(2)答案见解析.

【解析】试题分析:(1)利用点在椭圆上及相切关系布列方程组,即可解得椭圆的标准方程;

(2)联立方程易得: 为直径的圆过椭圆轴正半轴上的顶点,即,经检验得到结果.

试题解析:

法一(Ⅰ)由题意设椭圆的标准方程为

在椭圆上,∴

∵椭圆与直线相切,∴

由①②知

故所求椭圆方程为

法二:设椭圆为 )则它在点处的切线为,它与表示同一直线,∴

故所求椭圆方程为.

(Ⅱ)设 ,联立

因为以为直径的圆过椭圆的上顶点

时,直线过定点与已知矛盾

时,直线过定点满足

所以,直线过定点,定点坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,且成等差数列

1)若,求的面积

2)若成等比数列,试判断的形状

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数处的切线垂直于轴,求实数的值;

2)在(1)的条件下,求函数的单调区间;

3)若时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD - A1B1C1D1的棱长为2 EFG分别为BCCC1BB1的中点,则(

A.直线与直线AF垂直B.直线A1G与平面AEF平行

C.平面截正方体所得的截面面积为D.C与点G到平面AEF的距离相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的方程为,直线与曲线交于两点.

(1)求直线的标准参数方程;

(2)求的长;

(3)以为极点,轴的正半轴为极轴建立极坐标系,设点的极坐标为;求点到线段中点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),将曲线上各点的横坐标都缩短为原来的倍,纵坐标坐标都伸长为原来的倍,得到曲线,在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴非负半轴为极轴)中,直线的极坐标方程为

(1)求直线和曲线的直角坐标方程;

(2)设点是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数的图像上有与轴平行的切线,求参数的取值范围;

2)若函数处取得极值,且时,恒成立,求参数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若方程有2个不同的实根,则实数的取值范围是_____(结果用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业投资公司计划在2010年向某企业投入800万元用于开发新产品,并在今后若干年内,每年的投入资金都比上一年减少20%.估计2010年可获得投资回报收入400万元,由于该项投资前景广阔,预计今后的投资回报收入每年都会比上一年增加25%.

)设第年(2010年为第一年)的投入资金为万元,投资回报收入为万元,求的表达式;

)从哪一年开始,该投资公司前几年的投资回报总收入将超过总投入?

查看答案和解析>>

同步练习册答案