精英家教网 > 高中数学 > 题目详情

【题目】已知,若方程有2个不同的实根,则实数的取值范围是_____(结果用区间表示).

【答案】

【解析】

由方程的解与函数图象的交点个数的关系可得有2个不同的实根等价于的图象与直线的交点个数为2,由函数图象的性质及利用导数求切线方程可设过原点的直线与相切与点,由,则此切线方程为,又此直线过原点,则求得,即切线方程为再结合图象可得实数的取值范围是,得解.

解:由

可得:的图象关于直线对称,

有2个不同的实根等价于的图象与直线的交点个数为2,

的图象与直线的位置关系如图所示,

设过原点的直线与相切与点

则此切线方程为:

又此直线过原点

则求得

即切线方程为:

由图可知:当的图象与直线的交点个数为2时,

实数的取值范围是

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为 (为参数)以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

(1)求曲线的普通方程和极坐标方程;

(2)直线的极坐标方程为,若的公共点为,且是曲线的中心,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,对称轴为坐标轴,椭圆与直线相切于点

(1)求椭圆的标准方程;

(2)若直线 与椭圆相交于两点( 不是长轴端点),且以为直径的圆过椭圆轴正半轴上的顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C ,过点的直线l的参数方程为: (t为参数),直线l与曲线C分别交于MN两点.

(1)写出曲线C的直角坐标方程和直线l的普通方程;

(2)|PM ||MN||PN|成等比数列,求a的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地有一企业2007年建厂并开始投资生产,年份代号为7,2008年年份代号为8,依次类推.经连续统计9年的收入情况如下表(经数据分析可用线性回归模型拟合的关系):

年份代号(

7

8

9

10

11

12

13

14

15

当年收入(千万元)

13

14

18

20

21

22

24

28

29

(Ⅰ)求关于的线性回归方程

(Ⅱ)试预测2020年该企业的收入.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且在轴上截得弦的长为4。

(1)求动圆圆心的轨迹的方程;

(2)设,过点斜率为的直线交轨迹两点, 的延长线交轨迹两点。

①若的面积为3,求的值。

②记直线的斜率为,证明: 为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,平面平面 的中点.

1)求证: 平面

2)若 ,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在之间,将测试结果按如下方式分成六组:第一组,第二组,…,第六组,如图是按上述分组方法得到的频率分布直方图.

(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;

(2)已知第5,6两组市民中有3名女性,组织方要从第5,6两组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校初一年级全年级共有名学生,为了拓展学生的知识面,在放寒假时要求学生在假期期间进行广泛的阅读,开学后老师对全年级学生的阅读量进行了问卷调查,得到了如图所示的频率分布直方图(部分已被损毁),统计人员记得根据频率直方图计算出学生的平均阅读量为万字.根据阅读量分组按分层抽样的方法从全年级人中抽出人来作进一步调查.

(1)在阅读量为万到万字的同学中有人的成绩优秀,在阅量为万到万字的同学中有人成绩不优秀,请完成下面的列联表,并判断在“犯错误概率不超过”的前提下,能否认为“学生成绩优秀与阅读量有相关关系”;

阅读量为万到万人数

阅读量为万到万人数

合计

成绩优秀的人数

成绩不优秀的人数

合计

(2)在抽出的同学中,1)求抽到被污染部分的同学人数;2)从阅读量在万到万字及万到万字的同学中选出人写出阅读的心得体会.求这人中恰有人来自阅读量是万到万的概率.

参考公式: ,其中.

参考数据:

查看答案和解析>>

同步练习册答案