精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形AA1B1B中,∠A1AB=90°,A1B1∥AB,AB=AA1=2A1B1=2,直角梯形AA1C1C通过直角梯形AA1B1B以直线AA1为轴旋转得到,且使得平面AA1C1C⊥平面AA1B1B.点M为线段BC的中点,点P是线段BB1中点. (Ⅰ)求证:A1C1⊥AP;
(Ⅱ)求二面角P﹣AM﹣B的余弦值.

【答案】证明:(Ⅰ)∵在直角梯形AA1B1B中,∠A1AB=90°,A1B1∥AB,AB=AA1=2A1B1=2, 直角梯形AA1C1C通过直角梯形AA1B1B以直线AA1为轴旋转得到,
∴∠A1AB=∠A1AC=90°,且平面AA1C1C⊥平面AA1B1B,
∴∠BAC=90°,即AC⊥AB,
又∵AC⊥AA1 , 且AB∩AA1=A,
∴AC⊥平面AA1B1B,
由已知A1C1∥AC,∴A1C1⊥平面AA1B1B,
∵AP平面AA1B1B,∴A1C1⊥AP.
解:(Ⅱ)由(Ⅰ)知AC,AB,AA1两两垂直,
分别以AC,AB,AA1为x,y,z轴,建立空间直角系,
由已知得AB=AC=AA1=2A1B1=2A1C1=2,
∴A(0,0,0),B(0,2,0),C(2,0,0),B1(0,1,2),A1(0,0,2),
∵M为线段BC的中点,P为线段BB1的中点,
∴M(1,1,0),P(0, ,1),
平面ABM的一个法向量 =(0,0,1),
设平面APM的一个法向量 =(x,y,z),
,取x=2,得 =(2,﹣2,3),
由图知二面角P﹣AM﹣B的大小为锐角,
设二面角P﹣AM﹣B的平面角为θ,
则cosθ= = =
∴二面角P﹣AM﹣B的余弦值为

【解析】(Ⅰ)推导出AC⊥AB,AC⊥AA1 , 从而AC⊥平面AA1B1B,由A1C1∥AC,知A1C1⊥平面AA1B1B,由此能证明A1C1⊥AP.(Ⅱ)以AC,AB,AA1为x,y,z轴,建立空间直角系,利用向量法能求出二面角P﹣AM﹣B的余弦值.
【考点精析】解答此题的关键在于理解空间中直线与直线之间的位置关系的相关知识,掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于任意实数a,b,定义min{a,b}= ,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是(
A.{﹣1,1}∪(﹣ln2,- )∪( ,ln2)
B.[﹣1,- )∪
C.{﹣1,1}∪(﹣ln2,- )∪( ,ln2)
D.(- ,- )∪(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边长是a,b,c公差为1的等差数列,且a+b=2ccosA. (Ⅰ)求证:C=2A;
(Ⅱ)求a,b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|+5x.
(1)当a=﹣1时,求不等式f(x)≤5x+3的解集;
(2)若x≥﹣1时有f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中 中,曲线 的参数方程为 为参数),以原点 为极点, 轴的正半轴为极轴建立极坐标系.
(1)写出曲线 的普通方程和极坐标方程;
(2)若直线 与曲线 相交于点 两点,且 ,求证: 为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,该程序运行后输出的结果是(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线l的参数方程为 (t为参数),在极坐标系(与直角坐标系xoy取相同的单位长度,且以原点为极点,x轴的正半轴为极轴)中,圆C的极坐标方程为ρ=4cosθ.
(1)若直l线与圆C相切,求实数a的值;
(2)若点M的直角坐标为(1,1),求过点M且与直线l垂直的直线m的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,a2+b2+c2=ac+bc+ca.
(1)证明:△ABC是正三角形;
(2)如图,点D的边BC的延长线上,且BC=2CD,AD= ,求sin∠BAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术均输》中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5 钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,乙所得为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案