精英家教网 > 高中数学 > 题目详情
在△ABC中,已知sinB+sinC=sinA(cosB+cosC).判断△ABC的形状为
直角三角形,且∠A=90°
直角三角形,且∠A=90°
分析:先利用正弦定理化简已知的等式,然后再利用余弦定理表示出cosB及cosC,代入化简后的式子中,整理后根据b+c不为0,可得出b2+c2=a2,根据勾股定理的逆定理可得出三角形ABC为直角三角形.
解答:解:设A,B,C对边分别为a,b,c,
由sinB+sinC=sinA(cosB+cosC)得:b+c=a(cosB+cosC),
又cosB=
a2+c2-b2
2ac
,cosC=
a2+b2-c2
2ab

∴b+c=a(
a2+c2-b2
2ac
+
a2+b2-c2
2ab
),
整理得:(b+c)(b2+c2-a2)=0,
∵b+c≠0,∴b2+c2-a2=0,即b2+c2=a2
则△ABC为直角三角形,且∠A=90°.
故答案为:直角三角形,且∠A=90°
点评:此题考查了三角形形状的判断,涉及的知识有:正弦、余弦定理,以及勾股定理的逆定理,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知|
AB
|=4,|
AC
|=1,S△ABC=
3
,则
AB
AC
的值为(  )
A、-2B、2C、±4D、±2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•婺城区模拟)在△ABC中,已知
AB
AC
=9,sinB=cosA•sinC,S△ABC=6,P为线段AB上的点,且
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
,则xy的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=8,c=18,S△ABC=36
3
,则B等于
B=
π
3
3
B=
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,S△ABC=6
,P为线段AB上的一点,且
CP
=x•
CA
|
CA
|
+y•
CB
|
CB
|
,则
1
x
+
1
y
的最小值为
7
12
+
3
3
7
12
+
3
3

查看答案和解析>>

科目:高中数学 来源:高中数学全解题库(国标苏教版·必修4、必修5) 苏教版 题型:044

在△ABC中,已知SABC(a2+b2),求ABC

查看答案和解析>>

同步练习册答案