精英家教网 > 高中数学 > 题目详情
14.给出下列四个命题:
①已知命题p:?x0∈R,x0-2>lgx0,命题q:?x∈R,x2>0,则命题p∧(¬q)为真命题
②命题“若a>b,则2a>2b-1”的否命题为“若a>b,则2a≤2b-1“
③命题“任意x∈R,x2+1≥0”的否定是“存在x0∈R,x02+1<0”
④“x2>x”是“x>1”的必要不充分条件
其中正确的命题序号是①③④.

分析 举出特例判断命题p,q的真假,进而结合复合命题真假判断的真值表,可判断①;
写出原命题的否命题,可判断②;
定出原命题的否定,可判断③;
根据充要条件的定义,可判断④.

解答 解:①当x0=10时,x0-2=8>lgx0=1,故命题p:?x0∈R,x0-2>lgx0为真命题;
当x=0时,x2>=0,故命题q:?x∈R,x2>0为假命题,
则命题p∧(¬q)为真命题,故正确;
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”,故错误;
③命题“任意x∈R,x2+1≥0”的否定是“存在x0∈R,x02+1<0”,故正确;
④“x2>x”?“x<0,或x>1”,故“x2>x”是“x>1”的必要不充分条件,故正确;
故正确的命题序号是:①③④,
故答案为:①③④

点评 本题考查的知识点是命题的真假判断与应用,此类题型往往综合较多的其它知识点,综合性强,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.下列四种说法中正确的是③④
①若复数z满足方程z2+2=0,则z3=-2$\sqrt{2}$i;
②线性回归方程对应的直线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$一定经过其样本数据点(x1,y1),(x2,y2),…,(xn,yn)中的一个点;
③若(1-2x)2012=a0+a1x+…+a2012x2012(x∈R),则$\frac{a_1}{2}$+$\frac{a_2}{2^2}$+…+$\frac{{{a_{2012}}}}{{{2^{2012}}}}$=-1;
④用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={4,6},B={1,2},C={1,3},从这三个集合中各取一个元素构成空间直角坐标系中的点的坐标,则确定的不同点的个数42.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某转弯路段为四分之一圆环,圆环道路外侧均匀栽种了10棵树(如图所示),小李在半径OA的延长线上一点C处观察到第四棵树(P点),第七棵树(Q点)与点C在同一条直线上,并测得AC=100米,则此弧形道路的大圆半径OA的长为(  )
A.100$\sqrt{3}$米B.100($\sqrt{3}$+1)米C.200米D.100($\sqrt{3}$+$\sqrt{2}$)米

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有下列四个命题,其中正确的命题有(  )
①A、B到α的距离相等,则AB∥α;
②△ABC的三个顶点到平面α的距离相等,则平面ABC∥α;
③夹在两个平行平面间的平行线段相等;
④垂直于同一个平面的两条直线互相平行.
A.①②B.②③C.D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x0∈R,${9}^{{x}_{0}}$-m•${3}^{{x}_{0}}$+4≤0,若p为真命题,则实数m的取值范围是(  )
A.(4,+∞)B.[4,+∞)C.(-∞,4)D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=x|x-a|+a,(a≥0).
(1)若a=1,求函数f(x)的零点;
(2)若x∈[-1,1]时,|f(x)|≤1恒成立,求实数a的最大值.|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若kx2-kx+4≥0的解集为∅,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.命题“m∈R,不等式m2+tm-2≥0对于?t∈[-1,1]恒成立”是真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案