精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为(其中为参数).在以坐标原点为极点,以轴正半轴为极轴建立的极坐标系中,曲线的极坐标方程为,曲线的直角坐标方程为.

(1)求直线的极坐标方程和曲线的直角坐标方程;

(2)若直线与曲线分别相交于异于原点的点,求的取值范围.

【答案】(1) 直线的极坐标方程为:.的直角坐标方程为. (2)

【解析】

1)由直线的参数方程可知,直线过原点且倾斜角直线的为的直线,由此可表示出直线的极坐标;利用极坐标与直角坐标的互化公式即可得到曲线的直角坐标方程;

(2)点的极坐标分别为,得到|PQ| ,再利用三角函数的性质求出的取值范围。

解:(1)因为直线的参数方程为(其中为参数),

所以直线表示过原点且倾斜角直线的为的直线,则其极坐标方程为:

.

曲线的极坐标方程可化为

因此曲线的直角坐标方程为.

(2)设点的极坐标分别为

因为,即,所以的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则(

A.直线是相交直线

B.直线与直线所成角等于

C.直线与直线所成角等于直线与直线所成角

D.直线与平面所成角小于直线平面所成角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点且斜率为1的直线交抛物线两点,且.

(Ⅰ)求抛物线的方程;

(Ⅱ)抛物线上一点,直线(其中)与抛物线交于两个不同的点(均不与点重合).设直线的斜率分别为.直线是否过定点?如果是,请求出所有定点;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列满足:.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论正确的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,离心率为是椭圆上的一个动点,且面积的最大值为.

(1)求椭圆的方程;

(2)设直线斜率为,且与椭圆的另一个交点为,是否存在点,使得若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列1121241248124816其中第一项是,接下来的两项是,再接下来的三项是,依此类推那么该数列的前50项和为  

A. 1044 B. 1024 C. 1045 D. 1025

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面ABCDE分别为棱PAPC的中点,M是线段AD的中点,N是线段BC的中点,

求证:平面BDE

求直线MN到平面BDE的距离;

求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆C上的一点,椭圆C的离心率与双曲线的离心率互为倒数,斜率为直线l交椭圆CBD两点,且ABD三点互不重合.

1)求椭圆C的方程;

2)若分别为直线ABAD的斜率,求证:为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场对职工开展了安全知识竞赛的活动,将竞赛成绩按照,,,分成组,得到下面频率分布直方图.根据频率分布直方图.下列说法正确的是( )

①根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的众数估计值为;

②根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的中位数约为;

③若该商场有名职工,考试成绩在分以下的被解雇,则解雇的职工有人;

④若该商场有名职工,商场规定只有安全知识竞赛超过(包括)的人员才能成为安全科成员,则安全科成员有.

A.①③B.②③C.②④D.①④

查看答案和解析>>

同步练习册答案