精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式x2+lnx+(a-4)x 在(1,+∞)上是增函数.
(1)求实数a的取值范围;
(2)设g(x)=e2x-2ex+a x∈[0,ln3],求函数g(x)的最小值.

解:(1)求导函数,可得
∵函数f(x)=x2+lnx+(a-4)x 在(1,+∞)上是增函数
≥0在(1,+∞)上恒成立
∴a≥恒成立
(当且仅当x=1时,等号成立)

∴a≥2
(2)设t=ex,则g(t)=t2-2a+a=(t-a)2+a-a2
∵x∈[0,ln3],∴1≤t≤3
①当2≤a≤3时,g(t)最小值为a-a2
②当a≥3时,g(t)最小值为9-5a.
分析:(1)求导函数,根据函数f(x)=x2+lnx+(a-4)x 在(1,+∞)上是增函数,可得≥0在(1,+∞)上恒成立,分离参数,利用基本不等式,即可确定实数a的取值范围;
(2)设t=ex,则g(t)=t2-2a+a=(t-a)2+a-a2,1≤t≤3,再分类讨论:①2≤a≤3;②a≥3,即可得到结论.
点评:本题考查导数知识的运用,考查恒成立问题,考查二次函数最值的研究,分离参数,利用配方法求二次函数的最值时关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案