精英家教网 > 高中数学 > 题目详情
19.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
(1)求$\overline{t}$,$\overline{y}$并完成表格;
(2)求y关于t的线性回归方程;
(3)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
$\hat b=\frac{{\sum_{i=1}^n{({t_i}-{{\overline{t}}_{\;}})({y_i}-\overline{y})}}}{{\sum_{i=1}^n{{{({t_i}-{{\overline{t}}})}^2}}}}$.$\overline{t}$.

分析 (1)根据表中数据,计算$\overline{t}$与$\overline{y}$即可;
(2)根据题目中的公式,计算$\stackrel{∧}{b}$与$\stackrel{∧}{a}$,写出线性回归方程即可;
(3)根据线性回归方程分析该地区农村居民家庭人均纯收入y随着t的变化情况,计算t=9时,$\stackrel{∧}{y}$的值即可.

解答 解:(1)根据表中数据,得$\overline{t}$=$\frac{1}{7}$(1+2+3+4+5+6+7)=4,
$\overline{y}$=$\frac{1}{7}$(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3;
(2)根据公式,得
$\stackrel{∧}{b}$=$\frac{(1-4)(2.9-4.3)+(2-4)(3.3-4.3)+…+(7-4)(5.9-4.3)}{{(1-4)}^{2}{+(2-4)}^{2}{+…+(7-4)}^{2}}$=0.5,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$=4.3-0.5×4=2.3,
∴y关于t的线性回归方程为$\stackrel{∧}{y}$=0.5t+2.3;
(3)根据线性回归方程$\stackrel{∧}{y}$=0.5t+2.3,得
2007年至2013年该地区农村居民家庭人均纯收入y随着t的增加而增加的,
且t=9时,$\stackrel{∧}{y}$=0.5×9+2.3=6.8,
即预测该地区2015年的农村居民家庭人均纯收入为6.8(千元).

点评 本题考查了线性回归方程的求法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知边长为$\sqrt{2}$的正方形ABCD的对角线BD上任意取一点P,则$\overrightarrow{BP}$•($\overrightarrow{PA}$+$\overrightarrow{PC}$)的取值范围是$[-4,\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列命题:
①存在实数α,使sinα•cosα=1;
②函数f(x)=sin2x-$\frac{1}{2}$(x∈R)是偶函数;
③x=$\frac{π}{8}$是函数y=$sin(2x+\frac{5}{4}π)$的一条对称轴的方程;
④若α、β是第一象限的角,且α>β,则sinα>sinβ.
其中正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.sin(-660°)=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等差数列{an}中,已知a1=$\frac{1}{3}$,a3=$\frac{5}{3}$,an=33,则n=(  )
A.48B.49C.50D.51

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若x2+y2+z2=16,则x-2z的最大值为$4\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=(1+\frac{1}{tanx}){sin^2}x+msin(x+\frac{π}{4})sin(x-\frac{π}{4})$
(1)当m=0时,求f(x)的最小正周期并求f(x)在$[\frac{π}{8},\frac{3π}{4}]$上的取值范围
(2)当tanα=2时,f(α)=$\frac{3}{5}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.万佛湖风景区是中国首批、安徽省首家的“国家AAAA级旅游区”,近年旅游业发展迅猛,景区现欲申请一笔不超过五千万元五年期的贷款进行景区服务升级,已知投资x(百万元)可创造的就业岗位w=-$\frac{1}{8}$x2+10x个,每个岗位每年可创造利润4万元.(注:此笔贷款年利率为单利2%,即每100万元年利息为2万元,5年利息共10万元)
(1)如想在五年内收回投资,求x的取值范围;
(2)创造的就业岗位与此次五年期的景区改造创造的利润能否同时取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知3b=6a-2a,4a=8b-5b,试判断实数a,b的大小关系,并给出证明.

查看答案和解析>>

同步练习册答案