精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上动点,F是AB中点,AC=BC=2,AA1=4.
(1)求证:CF⊥平面ABB1
(2)当E是棱CC1中点时,求证:CF∥平面AEB1
(3)在棱CC1上是否存在点E,使得二面角A-EB1-B的大小是45°,若存在,求CE
的长,若不存在,请说明理由.
分析:(Ⅰ)欲证CF⊥平面ABB1,根据直线与平面垂直的判定定理可知只需证CF垂直平面ABB1内两相交直线垂直,而CF⊥BB1,CF⊥AB,BB1∩AB=B,满足定理条件;
(Ⅱ)取AB1的中点G,连接EG,FG,欲证CF∥平面AEB1,根据直线与平面平行的判定定理可知只需证CF与平面AEB1内一直线平行即可,而CF∥EG,CF?平面AEB1,EG?平面AEB1,满足定理条件.EB1-B
(III)以C为坐标原点,射线CA,CB,CC1为x,y,z轴正半轴,建立空间直角坐标系C-xyz,设出E点坐标,分别求出平面AEB1与EB1B的法向量,根据二面角A-EB1-B的大小是45°,代入向量夹角公式,构造方程即可得到答案.
解答:精英家教网证明:(Ⅰ)∵三棱柱ABC-A1B1C1是直棱柱,∴BB1⊥平面ABC.
又∵CF?平面ABC,
∴CF⊥BB1
∵∠ACB=90°,AC=BC=2,F是AB中点,
∴CF⊥AB.
又∵BB1∩AB=B,
∴CF⊥平面ABB1
(Ⅱ)取AB1的中点G,连接EG,FG.
∵F、G分别是棱AB、AB1中点,
∴FG∥BB1FG=
1
2
BB1
又∵EC∥BB1EC=
1
2
BB1

∴FG∥EC,FG=EC.
∴四边形FGEC是平行四边形,
∴CF∥EG.精英家教网
又∵CF?平面AEB1,EG?平面AEB1
∴CF∥平面AEB1.(9分)
(3)解:以C为坐标原点,射线CA,CB,CC1为x,y,z轴正半轴,
建立如图所示的空间直角坐标系C-xyz
则C(0,0,0),A(2,0,0),B1(0,2,4)(10分)
设E(0,0,m),平面AEB1的法向量
n
=(x,y,z)
AB1
=(-2,2,4),
AE
=(-2,0,m)
AB1
n
AE
n

于是
AB1
n
=0
AE
n
=0
,即
-2x+2y+4z=0
-2x+mz=0

取z=2,则
n
=(m,m-4,2)(12分)
∵三棱柱ABC-A1B1C1是直棱柱,
∴BB1⊥平面ABC,
又∵AC?平面ABC
∴AC⊥BB1
∵∠ACB=90°,
∴AC⊥BC
∴AC⊥平面ECBB1
CA
=(2,0,0)是平面EBB1的法向量,
二面角A-EB1-B的大小是45°,
则cos45°=
2
2
=
CA
n
|
CA
|•|
n
|
=
2m
2
m2+(m-4)2+22
(13分)
解得m=
5
2

∴在棱CC1上存在点E,使得二面角A-EB1-B的大小是45°.
此时CE=
5
2
   (14分)
点评:本小题主要考查直线与平面平行的判定,以及直线与平面垂直的判定,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB中点.
(Ⅰ)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)判断直线CF和平面AEB1的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分别是棱CC1、AB中点.
(1)判断直线CF和平面AEB1的位置关系,并加以证明;
(2)求四棱锥A-ECBB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点.
(Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);
(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•莒县模拟)如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CCl、AB中点.
(I)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)证明:直线CF∥平面AEBl

查看答案和解析>>

同步练习册答案