精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB中点.
(Ⅰ)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)判断直线CF和平面AEB1的位置关系,并加以证明.
分析:(1)要证CF⊥BB1,只需证明BB1⊥平面ABC;由三棱柱ABC-A1B1C1是直棱柱可以得出;
(2)要求四棱锥A-ECBB1的体积,需先求底面ECBB1(直角梯形)的面积;四棱锥的高是AC(需证明),再由体积公式可得;
(3)判断直线CF和平面AEB1的位置关系,由CF?平面AEB1,可猜想CF∥平面AEB1;要证明线面平行,需证线线平行即可.
解答:精英家教网解:如图,
(Ⅰ)证明:∵三棱柱ABC-A1B1C1是直棱柱,∴BB1⊥平面ABC;
又∵CF?平面ABC,∴CF⊥BB1

(Ⅱ)解:∵三棱柱ABC-A1B1C1是直棱柱,∴BB1⊥平面ABC.
又∵AC?平面ABC,∴AC⊥BB1
∵∠ACB=90°,∴AC⊥BC.
且BB1∩BC=B,∴AC⊥平面ECBB1
∴四棱锥VA-ECBB1的体积为
VA-ECBB1=
1
3
SECBB1•AC

由E是棱CC1的中点,∴EC=
1
2
AA1=2

SECBB1=
1
2
(EC+BB1)•BC=
1
2
×(2+4)×2=6

VA-ECBB1=
1
3
SECBB1•AC=
1
3
×6×2=4


(Ⅲ)解:CF∥平面AEB1.现证明如下:
取AB1的中点G,连接EG,FG.∵F、G分别是棱AB、AB1中点,
∴FG∥BB1,且FG=
1
2
BB1
又∵EC∥BB1,且EC=
1
2
BB1
,∴FG∥EC,且FG=EC.
∴四边形FGEC是平行四边形.∴CF∥EG.
又∵CF?平面AEB1,EG?平面AEB1
∴CF∥平面AEB1
点评:本题综合考查了空间中的垂直与平行关系,如(1)由线面垂直,得线线垂直;(2)说明AC是高时,证线面垂直,要先证线线垂直;(3)中证明线面平行时,需先证线线平行.所以理清空间中的垂直与平行关系,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上动点,F是AB中点,AC=BC=2,AA1=4.
(1)求证:CF⊥平面ABB1
(2)当E是棱CC1中点时,求证:CF∥平面AEB1
(3)在棱CC1上是否存在点E,使得二面角A-EB1-B的大小是45°,若存在,求CE
的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分别是棱CC1、AB中点.
(1)判断直线CF和平面AEB1的位置关系,并加以证明;
(2)求四棱锥A-ECBB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点.
(Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);
(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•莒县模拟)如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CCl、AB中点.
(I)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)证明:直线CF∥平面AEBl

查看答案和解析>>

同步练习册答案