精英家教网 > 高中数学 > 题目详情
13.已知全集U=R,A={x|x2-2x-3≤0},B={x|2≤x<5},C={x|x>a}.
(1)求A∩(∁UB);
(2)若A∪C=C,求a的取值范围.

分析 (1)解不等式得A,根据补集和交集的定义写出A∩(CUB);
(2)由A∪C=C,得A⊆C,根据集合C、A得出a的取值范围.

解答 解:(1)A={x|x2-2x-3≤0}={x|-1≤x≤3},
且B={x|2≤x<5},U=R,
∴CUB={x|x<2,或x≥5},
∴A∩(CUB)={x|-1≤x<2};
(2)由A∪C=C,得A⊆C,
又C={x|x>a},A={x|-1≤x≤3},
∴a的取值范围是a<-1.

点评 本题考查了集合的定义与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中的a3,a2017分别是函数f(x)=x3-6x2+4x-1的两个不同极值点,则${log_{\frac{1}{4}}}{a_{1010}}$为(  )
A.$\frac{1}{2}$B.2C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等比数列{an}的首项为$\frac{3}{2}$,公比为-$\frac{1}{2}$,前n项和为Sn,则当n∈N*时,Sn-$\frac{1}{{S}_{n}}$的最大值与最小值之和为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知tanα=2,求$\frac{{1+2sin({π+α})cos({-2π-α})}}{{{{sin}^2}({-α})-{{sin}^2}({\frac{5π}{2}-α})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数$z=3+\frac{3-4i}{4+3i}$,则$\overline z$=(  )
A.3+5iB.3+iC.3-iD.3-5i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中正确命题的个数是(  )
①对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1>0;
②已知命题p、q,“p为真命题”是“p∧q为真命题”的充要条件;
③当x∈(0,+∞)时,幂函数y=(m2-m-1)x-m+1为减函数,则实数m=2;
④当n=0或n=1时,幂函数y=xn的图象都是一条直线.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an}的前n项和为Sn,S7<S9<S8,给出下列命题:
①数列{an}为递减数列;②|a8|>|a9|;③Sn最大值为S8;④满足Sn>0的n最大值为16.
其中正确的命题个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若复数z满足$z=\frac{{(3-i){{(1+3i)}^2}}}{{{{(1-2i)}^2}}}$,则$|{\overline z}|$=$2\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.集合A={1,2,3,4},B={1,2,3},点P的坐标为(m,n),m∈A,n∈B,则点P在直线x+y=5上的概率为$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案