精英家教网 > 高中数学 > 题目详情
3.集合A={1,2,3,4},B={1,2,3},点P的坐标为(m,n),m∈A,n∈B,则点P在直线x+y=5上的概率为$\frac{1}{4}$.

分析 先求出基本事件总数N=4×3=12,再利用列举法求出点P在直线x+y=5上包含的基本事件的个数,由此能求出点P在直线x+y=5上的概率.

解答 解:集合A={1,2,3,4},B={1,2,3},点P的坐标为(m,n),m∈A,n∈B,
∴基本事件总数N=4×3=12,
点P在直线x+y=5上包含的基本事件有:
(2,3),(3,2),(4,1),共有M=3个,
∴点P在直线x+y=5上的概率为:
p=$\frac{M}{N}$=$\frac{3}{12}=\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知全集U=R,A={x|x2-2x-3≤0},B={x|2≤x<5},C={x|x>a}.
(1)求A∩(∁UB);
(2)若A∪C=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.从1,2,3,4,5,6,7,8这八个数中,每次取出两个不同的数分别记为a,b,共可得到logab的不同值的个数是43.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.随机调查某社区80个人,以研究这一社区居民的休闲方式是否与性别有关,得到下面的数据表:
休闲方式
性别
看电视运动合计
男性201030
女性45550
合计651580
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人是以运动为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为休闲方式与性别有关系?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$),其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$f(x)=4{sin^2}\frac{x}{2}sin({x-\frac{π}{2}})+2cosx-1-|{lg({x+1})}|$的零点个数为(  )
A.5B.6C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sinx+$\sqrt{3}$cosx在x=θ时取得最大值,则cos(2θ+$\frac{π}{4}$)=(  )
A.-$\frac{\sqrt{2}+\sqrt{6}}{4}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}-\sqrt{6}}{4}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x3+lnx在区间(0,2)内的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a∈R,“2a≥2”是“函数y=logax在(0,+∞)上为增函数”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线2x-y+9=0和直线4x-2y+1=0的位置关系是(  )
A.平行B.不平行
C.平行或重合D.既不平行也不重合

查看答案和解析>>

同步练习册答案