精英家教网 > 高中数学 > 题目详情
11.随机调查某社区80个人,以研究这一社区居民的休闲方式是否与性别有关,得到下面的数据表:
休闲方式
性别
看电视运动合计
男性201030
女性45550
合计651580
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人是以运动为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为休闲方式与性别有关系?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$),其中n=a+b+c+d)

分析 (1)由 题 意 知随机变量X的可能取值,根据题意得X~B(3,$\frac{1}{3}$),计算对应的概率值,写出X的分布列,计算数学期望值;
(2)计算K2,对照临界值表得出结论.

解答 解:(1)由 题 意 可 知,随机变量X的可能取值为0,1,2,3,
且 每 个 男 性 以 运 动 为 休 闲 方 式 的 概 率 为 P=$\frac{10}{30}$=$\frac{1}{3}$,
根 据 题 意 可 得 X~B( 3,$\frac{1}{3}$),
∴P( X=k)=${C}_{3}^{k}$•${(\frac{2}{3})}^{3-k}$•${(\frac{1}{3})}^{k}$,k=0,1,2,3,
故 X 的 分 布 列 为

X0123
P $\frac{8}{27}$$\frac{12}{27}$ $\frac{6}{27}$$\frac{1}{27}$
数学期望为E( X)=3×$\frac{1}{3}$=1;
(2)计算K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{80{×(20×5-45×10)}^{2}}{30×50×65×15}$=$\frac{784}{117}$≈6.70,
因 为 6.700>6.635,
所 以 我 们 有 99%的 把 握 认 为 休 闲 方 式 与 性 别 有 关.

点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,也考查了独立性检验的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知tanα=2,求$\frac{{1+2sin({π+α})cos({-2π-α})}}{{{{sin}^2}({-α})-{{sin}^2}({\frac{5π}{2}-α})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若复数z满足$z=\frac{{(3-i){{(1+3i)}^2}}}{{{{(1-2i)}^2}}}$,则$|{\overline z}|$=$2\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}满足an=$\frac{2n+4}{3}$,若从{an}中提取一个公比为q的等比数列{a${\;}_{{k}_{n}}$},其中k1=1且k1<k2<…<kn,kn∈N*,则满足条件的最小q的值为(  )
A.$\frac{4}{3}$B.$\frac{5}{4}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:x2=2py(p>0),过其焦点F作斜率为1的直线交抛物线C于M,N两点,且|MN|=8,
(1)求抛物线C的方程;
(2)已知动点P的圆心在抛物线C上,且过点D(0,2),若动圆P与x轴交于A,B两点,且|DA|<|DB|,求$\frac{{{{|{DA}|}^2}}}{{{{|{DB}|}^2}}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法正确的是(  )
A.“x<1”是“log2(x+1)<1”的充分不必要条件
B.命题“?x>0,2x>1”的否定是,“?x0≤0,${2}^{{x}_{0}}$≤1”
C.命题“若a≤b,则ac2≤bc2”的逆命题是真命题
D.命题“若a+b≠5,则a≠2或b≠3”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.集合A={1,2,3,4},B={1,2,3},点P的坐标为(m,n),m∈A,n∈B,则点P在直线x+y=5上的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+ax2+bx(a,b∈R)的图象在点(1,f(1))处的切线方程为4x-y-2=0.
(I)求a,b的值,
(II)判断函数f(x)的单调性;
(Ⅲ)若函数g(x)=$\frac{f(x)}{x+1}$-x在区间[t,+∞)(t∈N*)内存在极值,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线y2-$\frac{x^2}{a^2}$=1(a>0)的渐进线与圆(x-1)2+y2=$\frac{3}{4}$相切,则a=(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案