精英家教网 > 高中数学 > 题目详情
16.下列说法正确的是(  )
A.“x<1”是“log2(x+1)<1”的充分不必要条件
B.命题“?x>0,2x>1”的否定是,“?x0≤0,${2}^{{x}_{0}}$≤1”
C.命题“若a≤b,则ac2≤bc2”的逆命题是真命题
D.命题“若a+b≠5,则a≠2或b≠3”的逆否命题为真命题

分析 x<1时,不能得出log2(x+1)<1,判断充分性不成立,A错误;
写出命题“?x>0,2x>1”的否定即可判断B错误;
写出命题“若a≤b,则ac2≤bc2”的逆命题并判断C命题错误;
写出命题的逆否命题并判断它的真假性,得D正确.

解答 解:对于A,x<1时,x+1<2,不能得出x+1>0,
∴不能得出log2(x+1)<1,充分性不成立,A错误;
对于B,命题“?x>0,2x>1”的否定是:
“$?{x_0}>0,{2^{x_0}}≤1$”,B错误;
对于C,命题“若a≤b,则ac2≤bc2”的逆命题是:
“若ac2≤bc2,则a≤b”是假命题,如c=0时,命题不成立;
对于D,命题“若a+b≠5,则a≠2或b≠3”的逆否命题是:
“若a=2且b=3,则a+b=5”是真命题,D正确.
故选:D为真命题.

点评 本题考查了命题真假性的判断问题,也考查了四种命题之间的关系与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.为调查某地区中学毕业生的眼睛近视情况,用简单随机抽样方法从该地区调查了500名中学生,结果如下:
                   性别
眼睛是否近视
近视3040
不近视270160
(Ⅰ)估计该地区中学生中,眼睛近视学生的比例.
(Ⅱ)能否有99.5%的把握认为该地区的中学生眼睛近视与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查方法来估计该地区的中学生中,眼睛近视学生的比例?说明理由.
(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.)
参考值表:
 P(K2≥k00.150.100.050.0250.0100.0050.001
 k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l:kx-y+1+2k=0,k∈R
(1)直线过定点P,求点P坐标;
(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设三角形OAB的面积为4,求出直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设e表示自然对数的底数,函数f(x)=$\frac{{{{({e^2}-a)}^2}}}{4}+{(x-a)^2}$(a∈R),若关于x的不等式f(x)≤$\frac{1}{5}$有解,则实数a的取值范围为(  )
A.[e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$]B.[e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$)C.(e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$]D.(e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.随机调查某社区80个人,以研究这一社区居民的休闲方式是否与性别有关,得到下面的数据表:
休闲方式
性别
看电视运动合计
男性201030
女性45550
合计651580
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人是以运动为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为休闲方式与性别有关系?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$),其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x2-mx对任意的x1,x2∈[0,2],都有|f(x2)-f(x1)|≤9,求实数m的取值范围$[-\frac{5}{2},\frac{13}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sinx+$\sqrt{3}$cosx在x=θ时取得最大值,则cos(2θ+$\frac{π}{4}$)=(  )
A.-$\frac{\sqrt{2}+\sqrt{6}}{4}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}-\sqrt{6}}{4}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.记“点M(x,y)满足x2+y2≤a(a>0)“为事件A,记“M(x,y)满足$\left\{\begin{array}{l}{x-y+1≥0}\\{5x-2y-4≤0}\\{2x+y+2≥0}\end{array}\right.$”为事件B,若P(B|A)=1,则实数a的最大值为(  )
A.$\frac{1}{2}$B.$\frac{4}{5}$C.1D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,AB是圆O的直径,矩形DCBE垂直于圆O所在的平面,AB=4,BE=2.
(Ⅰ)证明:平面ADE⊥平面ACD;
(Ⅱ)当三棱锥C-ADE体积最大时,求三棱锥C-ADE的高.

查看答案和解析>>

同步练习册答案