| A. | “x<1”是“log2(x+1)<1”的充分不必要条件 | |
| B. | 命题“?x>0,2x>1”的否定是,“?x0≤0,${2}^{{x}_{0}}$≤1” | |
| C. | 命题“若a≤b,则ac2≤bc2”的逆命题是真命题 | |
| D. | 命题“若a+b≠5,则a≠2或b≠3”的逆否命题为真命题 |
分析 x<1时,不能得出log2(x+1)<1,判断充分性不成立,A错误;
写出命题“?x>0,2x>1”的否定即可判断B错误;
写出命题“若a≤b,则ac2≤bc2”的逆命题并判断C命题错误;
写出命题的逆否命题并判断它的真假性,得D正确.
解答 解:对于A,x<1时,x+1<2,不能得出x+1>0,
∴不能得出log2(x+1)<1,充分性不成立,A错误;
对于B,命题“?x>0,2x>1”的否定是:
“$?{x_0}>0,{2^{x_0}}≤1$”,B错误;
对于C,命题“若a≤b,则ac2≤bc2”的逆命题是:
“若ac2≤bc2,则a≤b”是假命题,如c=0时,命题不成立;
对于D,命题“若a+b≠5,则a≠2或b≠3”的逆否命题是:
“若a=2且b=3,则a+b=5”是真命题,D正确.
故选:D为真命题.
点评 本题考查了命题真假性的判断问题,也考查了四种命题之间的关系与应用问题,是基础题.
科目:高中数学 来源: 题型:解答题
| 性别 眼睛是否近视 | 男 | 女 |
| 近视 | 30 | 40 |
| 不近视 | 270 | 160 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$] | B. | [e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$) | C. | (e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$] | D. | (e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 休闲方式 性别 | 看电视 | 运动 | 合计 |
| 男性 | 20 | 10 | 30 |
| 女性 | 45 | 5 | 50 |
| 合计 | 65 | 15 | 80 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{2}+\sqrt{6}}{4}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}-\sqrt{6}}{4}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{4}{5}$ | C. | 1 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com