精英家教网 > 高中数学 > 题目详情
6.已知抛物线C:x2=2py(p>0),过其焦点F作斜率为1的直线交抛物线C于M,N两点,且|MN|=8,
(1)求抛物线C的方程;
(2)已知动点P的圆心在抛物线C上,且过点D(0,2),若动圆P与x轴交于A,B两点,且|DA|<|DB|,求$\frac{{{{|{DA}|}^2}}}{{{{|{DB}|}^2}}}$的最小值.

分析 (1)设抛物线的焦点坐标,设直线l的方程,代入抛物线方程,李媛媛韦达定理及抛物线的焦点弦公式,求出p,即可求出抛物线C的方程;
(2)设P点坐标,求得圆的方程,令y=0,根据对称性及|DA|<|DB|,求得A和B点坐标,利用两点之间的距离公式及基本不等式的性质即可求得$\frac{{|DA{|^2}}}{{|DB{|^2}}}$的最小值.

解答 解:(1)抛物线C:x2=2py的焦点F(0,$\frac{p}{2}$),则直线l的方程:$y=x+\frac{p}{2}$,
联立$\left\{\begin{array}{l}{x^2}=2py,\;\;\\ y=x+\frac{p}{2}\end{array}\right.⇒{x^2}-2px-{p^2}=0$,
设M(x1,y1),N(x2,y2),则x1+x2=2p,y1+y2=(x1+x2)+p=3p,
又因为直线MN过焦点,则|MN|=y1+y2+p=4p=8,解得:p=2,
∴该抛物线的方程为:x2=4y.
(2)设$P({{x_0},\;\;\frac{x_0^2}{4}})$,由于圆P过点D(0,2),
则圆P的方程为:${(x-{x_0})^2}+{({y-\frac{x_0^2}{4}})^2}={(0-{x_0})^2}+{({2-\frac{x_0^2}{4}})^2}$,
令y=0,则${x^2}-2{x_0}x+x_0^2-4=0⇒x={x_0}±2$.由对称性,|DA|<|DB|,不妨x0>0,则A(x0-2,0),B(x0+2,0).
故$\frac{{|DA{|^2}}}{{|DB{|^2}}}=\frac{{{{({x_0}-2)}^2}+4}}{{{{({x_0}+2)}^2}+4}}=\frac{{x_0^2-4{x_0}+8}}{{x_0^2+4{x_0}+8}}=1-\frac{{8{x_0}}}{{x_0^2+4{x_0}+8}}=1-\frac{8}{{{x_0}+\frac{8}{x_0}+4}}$,
由于${x_0}+\frac{8}{x_0}≥4\sqrt{2}$,
故$\frac{{|DA{|^2}}}{{|DB{|^2}}}=1-\frac{8}{{{x_0}+\frac{8}{x_0}+4}}≥1-\frac{8}{{4\sqrt{2}+4}}=3-2\sqrt{2}$,(${x_0}=2\sqrt{2}$时取等)
∴$\frac{{|DA{|^2}}}{{|DB{|^2}}}$的最小值为$3-2\sqrt{2}$.

点评 本题考查抛物线的标准方程,直线与抛物线的位置关系,考查韦达定理,抛物线的焦点弦公式,考查基本不等式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,点A与点A′在x轴上,且关于y轴对称,过点A′垂直于x轴的直线与抛物线y2=2x交于两点B,C,点D为线段AB 上的动点,点E在线段AC上,满足$\frac{{|{CE}|}}{{|{CA}|}}=\frac{{|{AD}|}}{{|{AB}|}}$.
(1)求证:直线DE与此抛物线有且只有一个公共点;
(2)设直线DE与此抛物线的公共点F,记△BCF与△ADE的面积分别为S1、S2,求$\frac{S_1}{S_2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点P在截面A1DB上,则线段AP的最小值等于$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.从1,2,3,4,5,6,7,8这八个数中,每次取出两个不同的数分别记为a,b,共可得到logab的不同值的个数是43.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知不等式ln(x+1)-1≤ax+b对一切x>-1都成立,则$\frac{b}{a}$的最小值是(  )
A.e-1B.eC.1-e-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.随机调查某社区80个人,以研究这一社区居民的休闲方式是否与性别有关,得到下面的数据表:
休闲方式
性别
看电视运动合计
男性201030
女性45550
合计651580
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人是以运动为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为休闲方式与性别有关系?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$),其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$f(x)=4{sin^2}\frac{x}{2}sin({x-\frac{π}{2}})+2cosx-1-|{lg({x+1})}|$的零点个数为(  )
A.5B.6C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x3+lnx在区间(0,2)内的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=$\left\{\begin{array}{l}{2x,(x>0)}\\{f(x+1),(x<0)}\end{array}\right.$,则f(-$\frac{4}{3}$)+f($\frac{4}{3}$)等于4.

查看答案和解析>>

同步练习册答案