精英家教网 > 高中数学 > 题目详情
1.已知a∈R,“2a≥2”是“函数y=logax在(0,+∞)上为增函数”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

分析 根据函数单调性的性质,利用充分条件和必要条件的定义进行判断即可得到结论.

解答 解:函数y=logax在(0,+∞)上为增函数,则a>1,
2a≥2”解得a≥1
“2a≥2”是“函数y=logax在(0,+∞)上为增函数”的必要不充分条件,
故选:A.

点评 本题主要考查充分条件和必要条件的判断,利用函数单调性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若复数z满足$z=\frac{{(3-i){{(1+3i)}^2}}}{{{{(1-2i)}^2}}}$,则$|{\overline z}|$=$2\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.集合A={1,2,3,4},B={1,2,3},点P的坐标为(m,n),m∈A,n∈B,则点P在直线x+y=5上的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+ax2+bx(a,b∈R)的图象在点(1,f(1))处的切线方程为4x-y-2=0.
(I)求a,b的值,
(II)判断函数f(x)的单调性;
(Ⅲ)若函数g(x)=$\frac{f(x)}{x+1}$-x在区间[t,+∞)(t∈N*)内存在极值,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中角A,B,C所对的边分别为a,b,c,满足ccosB+(b-2a)cosC=0.且c=2$\sqrt{3}$
(1)求角C的大小;
(2)求△ABC面积最大值,并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.要把3张不同的电影票分给10个人,每人最多一张,则有不同的分法种数是(  )
A.2 160B.720C.240D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z=1-2i(i为虚数单位)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线y2-$\frac{x^2}{a^2}$=1(a>0)的渐进线与圆(x-1)2+y2=$\frac{3}{4}$相切,则a=(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=a(x2+1).若对任意a∈(-4,-2)及x∈[1,3]时,恒有ma-f(x)>a2+lnx成立,则实数m的取值范围为(  )
A.m≤2B.m<2C.m≤-2D.m<-2

查看答案和解析>>

同步练习册答案