精英家教网 > 高中数学 > 题目详情
若双曲线的离心率是2,则实数k的值是     

试题分析:先根据双曲线方程可知a和b,进而求得c的表达式,利用离心率为2求得k的值.根据题意,由于双曲线的离心率是,则可知 ,故答案为
点评:本题主要考查了双曲线的简单性质.考查了学生的基础知识的积累.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别是,Q是椭圆外的动点,满足.点是线段与该椭圆的交点,点T是的中点.

(Ⅰ)设为点的横坐标,证明
(Ⅱ)求点T的轨迹的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的离心率为是其左右顶点,是椭圆上位于轴两侧的点(点轴上方),且四边形面积的最大值为4.

(1)求椭圆方程;
(2)设直线的斜率分别为,若,设△与△的面积分别为,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的顶点到渐进线的距离等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设连接双曲线的四个顶点组成的四边形的面积为,连接其四个焦点组成的四边形的面积为,则 的最大值是
A.B.C. 1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别求适合下列条件圆锥曲线的标准方程:
(1)焦点 为且过点椭圆;
(2)与双曲线有相同的渐近线,且过点的双曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的左、右焦点,是椭圆上位于第一象限内的一点,点也在椭圆上,且满足是坐标原点),,若椭圆的离心率为.
(1)若的面积等于,求椭圆的方程;
(2)设直线与(1)中的椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设中心在原点的双曲线与椭圆+y2=1有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆与抛物线的焦点均在轴上,的中心及的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:










(Ⅰ)求曲线的标准方程;
(Ⅱ)设直线过抛物线的焦点与椭圆交于不同的两点,当时,求直线的方程.

查看答案和解析>>

同步练习册答案