分析 由sin2A+sin2B=sin2C-$\sqrt{2}$sinAsinB,得${a}^{2}+{b}^{2}={c}^{2}-\sqrt{2}ab$,可得角C.
则sin2Atan2B=sin($\frac{π}{2}$-2B)tan2B=cos2B×$\frac{si{n}^{2}B}{co{s}^{2}B}$=cos2B×$\frac{1-cos2B}{1+cos2B}$
令1+cos2B=t,t∈(1,2),则cos2B×$\frac{1-cos2B}{1+cos2B}$=$\frac{(t-1)(2-t)}{t}$=-(t+$\frac{2}{t}-3$)$≤-(2\sqrt{2}-3)=3-2\sqrt{2}$即可
解答 解:∵△ABC中,有sin2A+sin2B=sin2C-$\sqrt{2}$sinAsinB,∴${a}^{2}+{b}^{2}={c}^{2}-\sqrt{2}ab$
⇒cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}=\frac{-\sqrt{2}ab}{2ab}=-\frac{\sqrt{2}}{2}$,即C=$\frac{3π}{4}$.
则2A+2B=$\frac{π}{2}$
则sin2Atan2B=sin($\frac{π}{2}$-2B)tan2B=cos2B×$\frac{si{n}^{2}B}{co{s}^{2}B}$=cos2B×$\frac{1-cos2B}{1+cos2B}$
令1+cos2B=t,t∈(1,2),则cos2B×$\frac{1-cos2B}{1+cos2B}$=$\frac{(t-1)(2-t)}{t}$
=-(t+$\frac{2}{t}-3$)$≤-(2\sqrt{2}-3)=3-2\sqrt{2}$
故t=$\sqrt{2}$时,sin2Atan2B最大值3-2$\sqrt{2}$.
故答案为:3-2$\sqrt{2}$
点评 本题考查了三角恒等变形,正、余弦定理,不等式的性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 外接球的体积为12$\sqrt{3}$ π | B. | 外接球的表面积为4π | ||
| C. | 体积为$\sqrt{2}$ | D. | 表面积为$\sqrt{5}$+$\sqrt{2}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -f(x) | B. | f(x) | C. | g(x) | D. | -g(x) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{16}$ | B. | $\frac{3}{16}$ | C. | $\frac{15}{2}$ | D. | $\frac{15}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{-3+\frac{3\sqrt{7}}{2}}$ | B. | $\sqrt{3+\frac{3\sqrt{7}}{2}}$ | C. | $\sqrt{7}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com