精英家教网 > 高中数学 > 题目详情
12.一个几何体的三视图如图所示,则这个几何体的(  )
A.外接球的体积为12$\sqrt{3}$ πB.外接球的表面积为4π
C.体积为$\sqrt{2}$D.表面积为$\sqrt{5}$+$\sqrt{2}$+1

分析 由三视图得到几何体为三棱锥,结合图中数据计算体积,表面积外接球体积、表面积.

解答 解:由三视图得到几何体为三棱锥,如图:体积为$\frac{1}{2}×2×1+\frac{1}{2}×2×\sqrt{2}+\frac{1}{2}×\sqrt{2}×\frac{\sqrt{10}}{2}×2$=1+$\sqrt{2}$$+\sqrt{5}$;体积为$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×\sqrt{2}=\frac{\sqrt{2}}{3}$;
故选:D.

点评 本题考查了由几何体的三视图求几何体的体积表面积等;关键是正确还原几何体.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知在数列{an}中,${a_1}=\frac{3}{2},{a_{n+1}}=a_n^2-2{a_n}+2$.,n∈N*
(1)求证:1<an+1<an<2;
(2)求证:$\frac{6}{{{2^{n-1}}+3}}≤{a_n}≤\frac{{{2^{n-1}}+2}}{{{2^{n-1}}+1}}$;
(3)求证:n<sn<n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设不等式|x-2|<a的解集为A,且$\frac{3}{2}$∈A,$\frac{1}{2}$∉A,则a的取值范围是(  )
A.$\frac{1}{2}$<a<$\frac{3}{2}$B.$\frac{1}{2}$≤a<$\frac{3}{2}$C.$\frac{1}{2}$<a≤$\frac{3}{2}$D.$\frac{1}{2}$≤a≤$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C的圆心为(-1,-3),且它与x轴相切.
(1)求圆的方程;
(2)若圆C被直线l:y=kx截得的弦长为$2\sqrt{7}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.6人分别担任六种不同工作,已知甲不能担任第一个工作,则任意分工时,乙没有担任第二项工作的概率为$\frac{21}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$6+4\sqrt{2}+2\sqrt{6}$B.$4+6\sqrt{2}+2\sqrt{5}$C.$4+2\sqrt{5}+2\sqrt{6}$D.$4+6\sqrt{2}+2\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,空间四边形OABC中,M、N分别是对边OA、BC的中点,点G在线段MN上,分$\overrightarrow{MN}$所成的定比为2,$\overrightarrow{OG}=x\overrightarrow{OA}+y\overrightarrow{OB}+z\overrightarrow{OC}$,则x、y、z的值分别为$\frac{1}{6}$,$\frac{1}{3}$,$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x+1|+|x-5|的最小值为m
(1)求m的值;
(2)若a,b,c为正实数,且a+b+c=m,求证:a2+b2+c2≥12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中若sin2A+sin2B=sin2C-$\sqrt{2}$sinAsinB,则sin2Atan2B最大值是3-2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案