精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x(x-a)(x-b),其中0<a<b.
(1)设f(x)在x=s和x=t处取得极值,其中s<t,求证:0<s<a<t<b;
(2)设A(s,f(s)),B(t,f(t)),求证:线段AB的中点C在曲线y=f(x)上;
(3)若数学公式,求证:过原点且与曲线y=f(x)相切的两条直线不可能垂直.

解:(1)f(x)=x3-(a+b)x2+abx,∴f'(x)=3x2-2(a+b)x+ab=0的两根为s,t,
令f'(x)=g(x),∵0<a<b,∴g(0)=ab>0,g(a)=a(a-b)<0,g(b)=b(b-a)>0,
故有0<s<a<t<b.
(2)设AB中点C(x0,y0),则
故有,∴

代入验算可知C在曲线y=f(x)上.
(3)过曲线上的点(x1,y1)的切线的斜率是31x2-2(a+b)x1+ab,
当x1=0时,切线的斜率k1=ab;
当x1≠0时,,∴
∴切线斜率
,∴,∴k2>(ab-2)
∴k1k2=abk2>ab(ab-2)=(ab-1)2-1≥-1
∴k1k2≠-1,故过原点且与曲线相切的两条直线不可能垂直.
分析:(1)根据函数的极值点出导数为0,知,极值点是导数等于零的根,所以先求导,再解导数等于零,两根为s,t,再判断x=a,b时导数的正负,比较大小即可.
(2)求出AB的中点坐标,再代入y=f(x),判断是否成立即可.
(3)如果两条切线互相垂直,则斜率乘积等于-1,所以要证两条切线不可能垂直,只需证明它们斜率之积不等于-1即可,利用曲线的切线斜率是该点处的导数来计算.
点评:本题主要考查导数,切线极值 知识,属于基础知识,基本运算的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案