精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,数学公式,点E是棱PB的中点.
(I)求证:平面ECD⊥平面PAD;
(II)求二面角A-EC-D的平面角的余弦值.

(I)证明:∵PA⊥平面ABCD,CD?平面ABCD,∴PA⊥CD,
∵底面ABCD为矩形,∴AD⊥CD
∵PA∩AD=A,∴CD⊥平面PAD
∵CD?平面ECD,
∴平面ECD⊥平面PAD;
(II)解:过点D作DF⊥CE,过点F作FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.
∵AD⊥AB,AD⊥PA,AB∩PA=A,∴AD⊥平面PAB,∴AD⊥AE,从而DE=
在Rt△CBE中,CE==
∵CD=,∴△CDE为等边三角形,故F为CE的中点,且DF=CD•sin60°=
因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.且FG=AE,
从而FG=,且G点为AC的中点,连接DG,则在Rt△ADC中,DG==
所以cos∠DFG==
分析:(I)证明CD⊥平面PAD,利用面面垂直的判定,可证平面ECD⊥平面PAD;
(II)过点D作DF⊥CE,过点F作FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角,先利用AD⊥平面PAB,故AD⊥AE,从而求得DE,在Rt△CBE中,利用勾股定理求得CE,进而可知CE=CD推断出△CDE为等边三角形,求得DF,因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG平行且等于AE的一半,从而求得FG,且G点为AC的中点,连接DG,则在Rt△ADC中,求得DG,最后利用余弦定理求得答案.
点评:本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定定理,正确作出面面角,求出三角形的三边,利用余弦定理求面面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案