精英家教网 > 高中数学 > 题目详情

已知函数,其中.

(Ⅰ)若的极值点,求的值;

(Ⅱ)求的单调区间;

(Ⅲ)若上的最大值是,求的取值范围.

 

 

【答案】

(Ⅰ)解:.                     

依题意,令,解得 .                       

经检验,时,符合题意.                               ………………4分                              

(Ⅱ)解:① 当时,.

的单调增区间是;单调减区间是.        

② 当时,令,得,或.

时,的情况如下:

所以,的单调增区间是;单调减区间是.

时,的单调减区间是.                  

时,的情况如下:

所以,的单调增区间是;单调减区间是.

③ 当时,的单调增区间是;单调减区间是.  

综上,当时,的增区间是,减区间是

时,的增区间是,减区间是

时,的减区间是

时,的增区间是;减区间是.

                                                        ………………10分

(Ⅲ)由(Ⅱ)知 时,上单调递增,由,知不合题意.

                                                             

时,的最大值是

,知不合题意.                     

时,单调递减,

可得上的最大值是,符合题意.     

所以,上的最大值是时,的取值范围是. …………12分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年临沂市质检一文)(14分)已知函数(其中a>0),且在点(0,0)处的切线与直线平行。

   (1)求c的值;

   (2)设的两个极值点,且的取值范围;

   (3)在(2)的条件下,求b的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

⒗ 已知函数,其中为实数,且处取得的极值为

⑴求的表达式;

⑵若处的切线方程。

  

查看答案和解析>>

科目:高中数学 来源:2013-2014学年北京市西城区高三上学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数,其中是自然对数的底数,.

函数的单调区间

时,求函数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海黄浦区高三上学期期末考试(即一模)文数学卷(解析版) 题型:解答题

已知函数(其中是实数常数,

(1)若,函数的图像关于点(—1,3)成中心对称,求的值;

(2)若函数满足条件(1),且对任意,总有,求的取值范围;

(3)若b=0,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届陕西省高二上学期期末考试理科数学试卷(解析版) 题型:选择题

已知函数(其中)的图象如图(上)所示,则函数的图象是(  )                                                    

 

查看答案和解析>>

同步练习册答案