精英家教网 > 高中数学 > 题目详情
5.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(3,4),当$\overrightarrow{a}$⊥$\overrightarrow{b}$时,sin2α+sin2α=$-\frac{3}{5}$.

分析 利用向量垂直,列出方程然后化简所求的表达式,求解即可.

解答 解:$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(3,4),$\overrightarrow{a}$⊥$\overrightarrow{b}$,可得4sinα+3cosα=0,
tanα=-$\frac{3}{4}$,
sin2α+sin2α=$\frac{si{n}^{2}α+sin2α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α+2tanα}{ta{n}^{2}α+1}$=$\frac{\frac{9}{16}-2×\frac{3}{4}}{\frac{9}{16}+1}$=$-\frac{3}{5}$.
故答案为:$-\frac{3}{5}$.

点评 本题考查向量的数量积的应用,三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合P={0,a},Q={1,2},若P∩Q=∅,则a等于(  )
A.1B.2C.l或2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.f(x)=x2+x+1,则f(f(2))=57.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.方程x2+y2+ax+2ay+$\frac{5}{4}$a2+a-1=0表示圆,则a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等比数列{an}的首项为$\frac{1}{2}$,公比为$\frac{1}{2}$,其前n项和Tn满足$|{T_n}-1|<\frac{1}{1000}$,则n的最小值为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某班在5男生4女生中选择4人参加演讲比赛,选中的4人中有男有女,且男生甲和女生乙最少选中一人,则不同的选择方法有(  )
A.91种B.90种C.89种D.86种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若角α的终边落在直线y=-3x上,求sinα,cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明B1C1⊥CE;
(2)(理)求二面角B1-CE-C1的正弦值.
(文)求异面直线CE与AD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数y=f(x)是奇函数,且当x>0时,f(x)=2x+1,则f(-2)=(  )
A.-3B.3C.5D.-5

查看答案和解析>>

同步练习册答案