精英家教网 > 高中数学 > 题目详情
13.方程x2+y2+ax+2ay+$\frac{5}{4}$a2+a-1=0表示圆,则a的取值范围是(-∞,1).

分析 直接利用利用二元二次方程表示圆的条件求解即可.

解答 解:方程x2+y2+ax+2ay+$\frac{5}{4}$a2+a-1=0表示圆,
可得a2+4a2-4($\frac{5}{4}$a2+a-1)>0,解得a<1.
故答案为:(-∞,1).

点评 本题考查二元二次方程表示圆的条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.
(1)求月平均用电量的众数和中位数;
(2)在月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[240,260)的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.己知函数f(x)=x3+ax2+bx+a2在x=l处有极值10,则f($\sqrt{2}$)+f′($\sqrt{2}$)+$\sqrt{2}$等于(  )
A.. 11B..12C.19D.12或19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列各点中,能作为函数$y=tan(x+\frac{π}{5})$(x∈R且$x≠kπ+\frac{3π}{10}$,k∈Z)的一个对称中心的点是(  )
A.(0,0)B.$(\frac{π}{5},0)$C.(π,0)D.$(\frac{3π}{10},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=xlnx,g(x)=x3+ax2+x.
(Ⅰ)讨论函数g(x)的极值点的个数;
(Ⅱ)若不等式2f(x)≤g′(x)在x∈(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ex,当x∈[0,1]时,求证:
(1)f(x)≥1+x;
(2)(1-x)f(x)≤1+x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(3,4),当$\overrightarrow{a}$⊥$\overrightarrow{b}$时,sin2α+sin2α=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{2π}{3}$的两个单位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则实数k的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=m2xm-1是幂函数,且当x∈(0,+∞)时f(x)是减函数,则m=(  )
A.-1B.-1或1C.1D.2

查看答案和解析>>

同步练习册答案