精英家教网 > 高中数学 > 题目详情
2.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{2π}{3}$的两个单位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则实数k的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.$\frac{5}{4}$

分析 由已知求得$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$,结合$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{a}$•$\overrightarrow{b}$=0得到关于k的一次方程得答案.

解答 解:由题意可得,$|\overrightarrow{{e}_{1}}|=|\overrightarrow{{e}_{2}}|=1$,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=|\overrightarrow{{e}_{1}}||\overrightarrow{{e}_{2}}|cos\frac{2π}{3}=-\frac{1}{2}$,
又$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,
得$(\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}})•(k\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})$=$k|\overrightarrow{{e}_{1}}{|}^{2}+(1-2k)\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}-2|\overrightarrow{{e}_{2}}|=0$,
∴k$-\frac{1}{2}$(1-2k)-2=0,得k=$\frac{5}{4}$.
故选:D.

点评 本题考查平面向量的数量积运算,考查了计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若p:a≤2,q:(a-2)≤0,则¬p是¬q的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.方程x2+y2+ax+2ay+$\frac{5}{4}$a2+a-1=0表示圆,则a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某班在5男生4女生中选择4人参加演讲比赛,选中的4人中有男有女,且男生甲和女生乙最少选中一人,则不同的选择方法有(  )
A.91种B.90种C.89种D.86种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若角α的终边落在直线y=-3x上,求sinα,cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$y=sin3x-\sqrt{3}cos3x$图象的一个对称中心可以是(  )
A.(0,0)B.$(\frac{π}{3},0)$C.$(\frac{π}{6},0)$D.$(\frac{π}{9},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明B1C1⊥CE;
(2)(理)求二面角B1-CE-C1的正弦值.
(文)求异面直线CE与AD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个等差数列{an}的前n项和为12,前2n项和为24,则前3n项和为(  )
A.36B.48C.38D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知动点P(x,y)与两定点M(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0).
(1)求动点P的轨迹C的方程;
(2)当轨迹C为焦点在y轴上的椭圆时,求λ的范围.

查看答案和解析>>

同步练习册答案