分析 (1)直接由题设可得kPM•kPN=$\frac{y}{x+1}$•$\frac{y}{x-1}$=λ,整理得答案;
(2)由x2-$\frac{{y}^{2}}{λ}$=1(λ≠0,x≠±1)表示焦点在y轴上的椭圆直接求出λ值.
解答 解:(1)由题设知直线PM与PN的斜率存在且均不为零,
∴kPM•kPN=$\frac{y}{x+1}$•$\frac{y}{x-1}$=λ,
整理得x2-$\frac{{y}^{2}}{λ}$=1(λ≠0,x≠±1);
(2)要使x2-$\frac{{y}^{2}}{λ}$=1(λ≠0,x≠±1)表示焦点在y轴上的椭圆,
则λ<-1.
∴当λ<-1时,轨迹C为中心在原点,焦点在y轴上的椭圆(除去短轴的两个端点).
点评 本题考查轨迹方程的求法,考查了椭圆的简单性质,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | 1 | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 是奇函数,又是增函数 | B. | 是偶函数,又是增函数 | ||
| C. | 是奇函数,又是减函数 | D. | 是偶函数.但不是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=|x|,g(t)=$\sqrt{{t}^{2}}$ | B. | y=x,y=$\frac{{x}^{2}}{x}$ | ||
| C. | f(x)=$\sqrt{1+x}$-$\sqrt{x-1}$,y=$\sqrt{{x}^{2}-1}$ | D. | f(x)=$\sqrt{(3-x)^{2}}$,y=x-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com