精英家教网 > 高中数学 > 题目详情
11.一个等差数列{an}的前n项和为12,前2n项和为24,则前3n项和为(  )
A.36B.48C.38D.40

分析 利用等差数列的性质Sn,S2n-Sn,S3n-S2n成等差数列进行求解.

解答 解:∵等差数列{an}的前n项和为Sn
∴Sn,S2n-Sn,S3n-S2n成等差数列,
即12,12,S3n-24成等差数列,
∴12+S3n-24=12×2,
∴S3n=36,
故选A.

点评 本题使用了等差数列的一个重要性质,即等差数列的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n,…成等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列各点中,能作为函数$y=tan(x+\frac{π}{5})$(x∈R且$x≠kπ+\frac{3π}{10}$,k∈Z)的一个对称中心的点是(  )
A.(0,0)B.$(\frac{π}{5},0)$C.(π,0)D.$(\frac{3π}{10},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{2π}{3}$的两个单位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则实数k的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.过点(0,1)的直线l被圆(x-1)2+y2=4所截得的弦长最短时,直线l的方程为x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)满足f(x)=2f($\frac{1}{x}$)•x-1,则f(4)的值是(  )
A.3B.-3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱ABC-A1B1C1中,△ACC1≌△B1 CC1,CA⊥C1 A且CA=C1 A=2.
(1)求证:AB1丄CC1
(2)若AB1=2,求四棱锥A-BCC1B1,的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=m2xm-1是幂函数,且当x∈(0,+∞)时f(x)是减函数,则m=(  )
A.-1B.-1或1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设定义在R上的函数f(x)=|x|,则f(x)(  )
A.是奇函数,又是增函数B.是偶函数,又是增函数
C.是奇函数,又是减函数D.是偶函数.但不是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sinα+cosα=$\frac{{3\sqrt{5}}}{5}$,α∈(${\frac{π}{4}$,$\frac{π}{2}}$),求sin2α和tan2α的值.

查看答案和解析>>

同步练习册答案