精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|2x+1|+|2x+a|
(1)a=-3时,求不等式f(x)≤6的解集;
(2)若关于x的不等式f(x)>a恒成立,求实数a的取值范围.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:(1)a=-3时,由f(x)=|2x+1|+|2x-3|≤6,通过对x取值范围的讨论,去掉原不等式中的绝对值符号,解相应的一次不等式,最后取其并即可;
(2)利用绝对值不等式的几何意义,可得|2x+1|+|2x+a|≥|2x+1-(2x+a)|=|1-a|,从而可求得实数a的取值范围.
解答: 解:(1)∵a=-3时,f(x)=|2x+1|+|2x-3|≤6,
x>
3
2
(2x+1)+(2x-3)≤6
-
1
2
≤x≤
3
2
(2x+1)-(2x-3)≤6
x<-
1
2
-(2x+1)-(2x-3)≤6

解得
3
2
<x≤2或-
1
2
≤x≤
3
2
或-1≤x<-
1
2

即原不等式的解集为:{x|-1≤x≤2}…(5分)
(2)∵|2x+1|+|2x+a|≥|2x+1-(2x+a)|=|1-a|,
a<
1
2
…(10分)
点评:本题考查绝对值不等式的解法,考查通过分类讨论去掉原不等式中绝对值符号的应用,考查恒成立问题与运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,其中正视图是正三角形,则该几何体的侧面积为(  )
A、
2
6
3
B、4+4
3
+4
7
C、4
3
+4
7
D、4+4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
y≤x
x+y≤1
y≥-1
,则z=2x-y的最大值为(  )
A、-3
B、
1
2
C、5
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1nx+x-
a
x
(a≥-2),g(x)=ex-x
,其中e为自然对数的底数,且当x>0时f(x)≥3恒成立.
(Ⅰ)求g(x)的单调区间;
(Ⅱ)求实数a的所有可能取值的集合;
(Ⅲ)求证:f(x)+g(x)>4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
cos(2x-
3
)+2sin2(x-
π
12
),钝角△ABC(角A、B、C所对的边长分别为 a、b、c)的角B满足f(B)=1.
(1)求函数f(x)的单调递增区间;
(2)若b=3,c=3
3
,求B、a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-ex(a∈R).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设g(x)=x2-2x+1,证明:当1<a<e时,对任意x1∈(-∞,+∞),总存在x2∈[0,1],使得f(x1)<g(x2)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校内有一块以O为圆心,R(R为常数,单位为米)为半径的半圆形(如图)荒地,该校总务处计划对其开发利用,其中弓形BCDB区域(阴影部分)用于种植学校观赏植物,△OBD区域用于种植花卉出售,其余区域用于种植草皮出售.已知种植学校观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元.
(1)设∠BOD=θ(单位:弧度),用θ表示弓形BCDB的面积S=f(θ);
(2)如果该校总务处邀请你规划这块土地,如何设计∠BOD的大小才能使总利润最大?并求出该最大值.
(参考公式:扇形面积公式S=
1
2
R2θ=
1
2
Rl,l表示扇形的弧长)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若存在x0∈D,对任意的x∈D,都有f(x)≥f(x0)或者f(x)≤f(x0),则称f(x0)为函数f(x)在区间D上的“下确界”或“上确界”.
(Ⅰ)求函数f(x)=ln(2-x)+x2在[0,1]上的“下确界”;
(Ⅱ)若把“上确界”减去“下确界”的差称为函数f(x)在D上的“极差M”,试求函数F(x)=x|x-2a|+3(a>0)在[1,2]上的“极差M”;
(Ⅲ)类比函数F(x)的“极差M”的概念,请求出G(x,y)=(1-x)(1-y)+
x
1+y
+
y
1+x
在D={(x,y)|x,y∈[0,1]}上的“极差M”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cosx•sin(
π
6
+x)(x∈R)
(1)求f(x)在[0,π]上的单调增区间;
(2)△ABC中,f(C)=1,且边长c=2,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案