精英家教网 > 高中数学 > 题目详情
(2013•青岛一模)设函数f(x)=lnx,g(x)=ax+
bx
,函数f(x)的图象与x轴的交点也在函数g(x)的图象上,且在此点有公切线.
(Ⅰ)求a、b的值;
(Ⅱ)试比较f(x)与g(x)的大小.
分析:(Ⅰ)首先求出函数f(x)的图象与x轴的交点坐标(1,0),代入函数g(x)后得到关于a,b的等式,再由两函数在(1,0)处由公切线,得到关于a,b的另一等式,两式联立即可求得a,b的值;
(Ⅱ)令辅助函数F(x)=f(x)-g(x),把函数f(x)和g(x)的解析式代入,整理后求出其导函数,由导函数可知F(x)在定义域(0,+∞)内是减函数,然后分0<x<1,x=1,x>1进行大小比较.
解答:解:(Ⅰ)由f(x)=lnx=0,得x=1,所以函数f(x)=lnx的图象与x轴的交点坐标是(1,0),
依题意,得g(1)=a+b=0  ①
f(x)=
1
x
g(x)=a-
b
x2
,∵f(x)与g(x)在点(1,0)处有公切线,
∴g(1)=f(1)=1,即a-b=1  ②
由①、②得a=
1
2
b=-
1
2
;  
(Ⅱ)令F(x)=f(x)-g(x),
F(x)=lnx-(
1
2
x-
1
2x
)=lnx-
1
2
x+
1
2x

函数F(x)的定义域为(0,+∞).
F(x)=
1
x
-
1
2
-
1
2x2
=-
1
2
(
1
x
-1)2
≤0,
∴函数F(x)在(0,+∞)上为减函数.
当0<x<1时,F(x)>F(1)=0,即f(x)>g(x);
当x=1时,F(x)=F(1)=0,即f(x)=g(x);
当x>1时,F(x)<F(1)=0,即f(x)<g(x).
综上可知,当0<x≤1时,f(x)≥g(x);当x>1时,f(x)<g(x).
点评:本题考查了利用导数研究曲线上某点的切线方程,训练了构造函数法比较两个函数值的大小,考查了分类讨论得数学思想方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)下列函数中周期为π且为偶函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)“k=
2
”是“直线x-y+k=0与圆“x2+y2=1相切”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)函数y=21-x的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知x,y满足约束条件
x2+y2≤4
x-y+2≥0
y≥0
,则目标函数z=-2x+y的最大值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足:△ABC的周长为2+2
2
,记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)曲线W上是否存在这样的点P:它到直线x=-1的距离恰好等于它到点B的距离?若存在,求出点P的坐标;若不存在,请说明理由;
(Ⅲ)设E曲线W上的一动点,M(0,m),(m>0),求E和M两点之间的最大距离.

查看答案和解析>>

同步练习册答案