精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+ax+b的图象与x轴在(0,1)上有两个不同的交点,求b(1+a+b)的取值范围.
考点:一元二次方程的根的分布与系数的关系
专题:函数的性质及应用
分析:由题意可得
=a2-4b>0
0<-
a
2
<1
f(0)=b>0
f(1)=1+a+b>0
,由此求得b(1+a+b)的取值范围.
解答: 解:由题意可得
=a2-4b>0
0<-
a
2
<1
f(0)=b>0
f(1)=1+a+b>0
,可得b(1+a+b)>0,
故b(1+a+b)的取值范围为(0,+∞).
点评:本题主要考查一元二次方程根的分布与系数的关系,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)求对称轴为坐标轴,离心率e=
2
3
,短轴长为8
5
的椭圆的标准方程.
(2)求焦点是F(-2,0)的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆O1与圆O2交于A,B两点,圆O1上的点M处切线交圆O2于D,E两点,交直线AB于点C.若CM=2,CD=1,且∠DBE=30°,则圆O2的半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设曲线y=xn+1(n∈N*)在点(1,1)处的切线方程与x轴的交点的横坐标为xn,则x1x2x3…x2014的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x2-2ax+1在区间[1,3]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)log2.56.25+lg0.1+ln
e
+2log23

(2)已知a-a-1=1,求
a2+a-2-3
a3+a-3
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数(1)y=πx;(2)y=2x-1;(3)y=
1
x
;(4)y=2-1-3x中,是一次函数的有(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,使sinx=
5
2
;命题q:?x∈R,都有x2+x+1>0.给出下列结论:
①命题“p∧q”是真命题;
②命题“¬p∨q”是假命题
③命题“¬p∨q”是真命题;              
④命题“p∨¬q”是假命题;
其中正确的是(  )
A、②③B、②④C、③④D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y+1≥0
x+y-2≤0
x≥0,y≥0
,则z=x+2y的最大值是
 

查看答案和解析>>

同步练习册答案