精英家教网 > 高中数学 > 题目详情
9.若a>3,则方程x3-ax2+1=0在区间(0,2)上的实根个数是(  )
A.3 个B.2 个C.1个D.0个

分析 对函数进行求导,判断函数在区间(0,2)上的单调性,从而判断根的个数.

解答 解:方程x3-ax2+1=0在(0,2)上的实根,即为函数f(x)=x3-ax2+1=0在(0,2)上的零点,
∵f′(x)=3x2-2ax=x(3x-2a),a>3,
∴当x∈(0,2)时,f′(x)<0恒成立,
故函数f(x)=x3-ax2+1=0在(0,2)上为减函数,
∵f(0)=1>0,f(2)=9-4a<0,
故函数f(x)=x3-ax2+1=0在(0,2)上有且只有一个零点,
即方程x3-ax2+1=0在(0,2)上的实根个数是1个,
故选:C.

点评 此题考查方程根的存在性及其个数,难度不大,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.下列函数称为双曲函数:双曲正弦:shx=$\frac{{e}^{x}-{e}^{-x}}{2}$,双曲余弦:chx=$\frac{{e}^{x}+{e}^{-x}}{2}$,双曲正切:thx=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$.
(1)对比三角函数的性质,请你找出它们的三个类似性质;
(2)求双曲正弦shx的导数,并求在点x=0处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在极坐标系中,若过点A(3,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=(  )
A.$2\sqrt{2}$B.2$\sqrt{3}$C.$3\sqrt{2}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设向量$\overrightarrow{a}$=(x-1,x),$\overrightarrow{b}$=(x+2,x-4),则“$\overrightarrow{a}$⊥$\overrightarrow{b}$”是“x=2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,四边形ABCD中AC⊥BD,CE=2AE=2BE=2DE=2,将四边形ABCD沿着BD折叠,得到图2所示的三棱锥A-BCD,其中AB⊥CD.
(Ⅰ)证明:平面ACD⊥平面BAD;
(Ⅱ)若F为CD中点,求二面角C-AB-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,满足${S_n}=2{a_n}-{2^n}(n∈{N^*})$.
(1)证明$\{\frac{a_n}{2^n}\}$是等差数列,并求{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在四棱柱ABCD-A1B1C1D1,侧棱AA1⊥底面ABCD,AB⊥AD,BC∥AD,且AB=2,AD=4,BC=1,侧棱AA1=4.
(1)若E为AA1上一点,试确定E点的位置,使EB∥平面A1CD;
(2)在(1)的条件下,求二面角E-BD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在极坐标系中,已知$A(2,\frac{π}{6}),B(4,\frac{5π}{6})$,则A,B两点之间的距离|AB|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设f(x)=$\left\{\begin{array}{l}{cosx,x∈[0,π]}\\{1,x∈(π,2π]}\end{array}\right.$则${∫}_{0}^{2π}$f(x)dx=π.

查看答案和解析>>

同步练习册答案