分析 运用不等式a2+b2≥2ab(当且仅当a=b取等号),借助累加法和不等式的传递性,即可得证.
解答 证明:由于a,b,c为互不相等的实数,
则a4+b4>2a2b2,b4+c4>2b2c2,c4+a4>2c2a2,
相加可得,a4+b4+c4>a2b2+b2c2+c2a2,①
又a2b2+b2c2>2ab2c,b2c2+c2a2>2bc2a,c2a2+a2b2>2ca2b,
相加可得,a2b2+b2c2+c2a2>ab2c+bc2a+ca2b=abc(a+b+c).②
由①②可得,a4+b4+c4>abc(a+b+c),
所以$\frac{{a}^{3}}{bc}$+$\frac{{b}^{3}}{ca}$+$\frac{{c}^{3}}{ab}$≥a+b+c.
点评 本题考查不等式的证明,考查基本不等式的运用,考查累加法证明不等式的方法,考查推理能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | $\frac{5}{2}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{7}$ | B. | $\frac{3}{8}$ | C. | $\frac{7}{8}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com