精英家教网 > 高中数学 > 题目详情
9.以直角坐标系的原点O为极点,x轴的正半轴建立坐标系,且两个坐标系取相等的单位长度.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{3}t\\ y=1+t\end{array}\right.$,(t是参数),圆C的极坐标方程为ρ=2.
(1)写出直线l及圆C的普通方程;
(2)设P(1,1),直线l与圆C相交于A,B,求||PA|-|PB||的值.

分析 (1)直线l的参数方程消去参数t,可得直线l的普通方程.圆C的极坐标方程为ρ=2,直接求解可得圆C的普通方程.
(2)转化直线l的参数方程为标准参数方程的形式,代入圆C利用参数的几何意义求解即可.

解答 解:(1)直线l的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{3}t\\ y=1+t\end{array}\right.$,消去参数t,
可得直线l的普通方程是$x-\sqrt{3}y+\sqrt{3}-1=0$…(2分).
圆C的极坐标方程为ρ=2,可得圆C的普通方程为x2+y2=4…(4分)
(2)直线l的参数方程可化为$\left\{\begin{array}{l}x=1+\frac{{\sqrt{3}}}{2}t′\\ y=1+\frac{1}{2}t′\end{array}\right.$,(t′是参数)…(6分)
代入圆C:x2+y2=4中,整理得$t{′^2}+(\sqrt{3}+1)t′-2=0$,
${t_1}′+{t_2}′=-(\sqrt{3}+1)$,t1′t2′=-2…(8分)
∴$|{|{PA}|-|{PB}|}|=|{|{{t_1}′}|-|{{t_2}′}|}|=|{{t_1}′+{t_2}′}|=\sqrt{3}+1$…(10分)

点评 本题考查直线与圆的位置关系,参数方程以及极坐标方程与普通方程的互化,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知a、b、c都是正数,求证:$\frac{{a}^{3}}{bc}$+$\frac{{b}^{3}}{ca}$+$\frac{{c}^{3}}{ab}$≥a+b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在复平面上,复数z=$\frac{3+i}{1+i}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个小组的3个学生在分发数学作业时,从他们3人的作业中各随机地取出2份作业,则每个学生拿的都不是自己作业的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,都存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
①M={(x,y)|y=$\frac{1}{x}$};       
②M={(x,y)|y=log2x};
③M={(x,y)|y=ex-2;      
④M={(x,y)|y=sinx+1.
其中是“垂直对点集”的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设n∈N*,函数f(x)=$\frac{lnx}{{x}^{n}}$,函数g(x)=$\frac{{e}^{x}}{{x}^{n}}$,x∈(0,+∞),
(1)当n=1时,写出函数y=f(x)-1零点个数,并说明理由;
(2)若曲线 y=f(x)与曲线 y=g(x)分别位于直线l:y=1的两侧,求n的所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,半球内有一内接正四棱锥S-ABCD,该四棱锥的体积为$\frac{4\sqrt{2}}{3}$,则该半球的体积为$\frac{4\sqrt{2}}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设集合{(x,y)|(x-1)2+(x-2)2≤10}所表示的区域为A,过原点O的直线l将A分成两部分,当这两部分面积之差最大时,直线l的方程为x+2y=0,此时直线l落在区域A内的线段长为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数y=sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位,再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),则所得函数图象对应的解析式为(  )
A.y=sin(x-$\frac{2π}{3}$)B.y=sin(x-$\frac{π}{3}$)C.y=sin4xD.y=sinx

查看答案和解析>>

同步练习册答案