精英家教网 > 高中数学 > 题目详情
1.如图,半球内有一内接正四棱锥S-ABCD,该四棱锥的体积为$\frac{4\sqrt{2}}{3}$,则该半球的体积为$\frac{4\sqrt{2}}{3}$π.

分析 利用半球内有一内接正四棱锥S-ABCD,该四棱锥的体积为$\frac{4\sqrt{2}}{3}$,求出球的半径,利用体积公式,求出半球的体积.

解答 解:设球的半径为R,则底面ABCD的面积为2R2
∵半球内有一内接正四棱锥S-ABCD,该四棱锥的体积为$\frac{4\sqrt{2}}{3}$,
∴$\frac{1}{3}×2{R}^{2}×R$=$\frac{4\sqrt{2}}{3}$,
∴R3=2$\sqrt{2}$,
∴该半球的体积为V=$\frac{1}{2}×\frac{4}{3}{R}^{3}$π=$\frac{4\sqrt{2}}{3}$π.
故答案为:$\frac{4\sqrt{2}}{3}$π.

点评 本题考查半球的体积,考查四棱锥的体积,求出球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FP}$=3$\overrightarrow{FQ}$,则|QF|=(  )
A.$\frac{8}{3}$B.$\frac{5}{2}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.
(Ⅰ)求证:AC•BC=AD•AE;
(Ⅱ)若AF=2,CF=2$\sqrt{2}$,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.以直角坐标系的原点O为极点,x轴的正半轴建立坐标系,且两个坐标系取相等的单位长度.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{3}t\\ y=1+t\end{array}\right.$,(t是参数),圆C的极坐标方程为ρ=2.
(1)写出直线l及圆C的普通方程;
(2)设P(1,1),直线l与圆C相交于A,B,求||PA|-|PB||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.同时具有性质:①最小正周期是π;②图象关于直线x=$\frac{π}{3}$对称的一个函数是(  )
A.y=cos($\frac{x}{2}-\frac{π}{6}$)B.y=sin(2x-$\frac{π}{6}$)C.y=cos(2x-$\frac{π}{6}$)D.y=sin(2x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设二次函数y=f(x)=ax2+bx+c(a>b>c),f(1)=0,且存在实数m使得f(m)=-a.
(Ⅰ)求证:(i)b≥0;(ii)f(m+3)>0;
(Ⅱ)函数y=g(x)=f(x)+bx的图象与x轴的两个交点间的距离记为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A,B,C所对应的边分别为a,b,c.若a=$\sqrt{2}$,b=2,B=$\frac{π}{4}$,则A的值为(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个圆锥的体积是$\frac{π}{3}$,高是1,它的顶点和底面圆周在球O的球面上,则球O的表面积是(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1}&{(x≥0)}\\{-{x}^{2}+2x}&{(x<0)}\end{array}\right.$,则f(2)=3,若f(a)=1,则a=1.

查看答案和解析>>

同步练习册答案