分析 (I)如图所示,连接BE.由于AE是⊙O的直径,可得∠ABE=90°.利用∠E与∠ACB都是$\widehat{AB}$所对的圆周角,可得∠E=∠ACB.进而得到△ABE∽△ADC,即可得到.
(II)利用切割线定理可得CF2=AF•BF,可得BF.再利用△AFC∽△CFB,可得AF:FC=AC:BC,进而根据sin∠ACD=sin∠AEB,AE=$\frac{AB}{sin∠AEB}$,即可得出答案.
解答 证明:(I)如图所示,连接BE.![]()
∵AE是⊙O的直径,∴∠ABE=90°.
又∠E与∠ACB都是$\widehat{AB}$所对的圆周角,
∴∠E=∠ACB.
∵AD⊥BC,∠ADC=90°.
∴△ABE∽△ADC,
∴AB:AD=AE:AC,
∴AB•AC=AD•AE.
又AB=BC,
∴BC•AC=AD•AE.
解:(II)∵CF是⊙O的切线,
∴CF2=AF•BF,
∵AF=2,CF=2$\sqrt{2}$,
∴(2$\sqrt{2}$)2=2BF,解得BF=4.
∴AB=BF-AF=2.
∵∠ACF=∠FBC,∠CFB=∠AFC,
∴△AFC∽△CFB,
∴AF:FC=AC:BC,
∴AC=$\frac{AF•BC}{CF}$=$\sqrt{2}$.
∴cos∠ACD=$\frac{\sqrt{2}}{4}$,
∴sin∠ACD=$\frac{\sqrt{14}}{4}$=sin∠AEB,
∴AE=$\frac{AB}{sin∠AEB}$=$\frac{4\sqrt{14}}{7}$
点评 本题考查了圆的性质、三角形相似、切割线定理,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com