精英家教网 > 高中数学 > 题目详情
19.将函数y=sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位,再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),则所得函数图象对应的解析式为(  )
A.y=sin(x-$\frac{2π}{3}$)B.y=sin(x-$\frac{π}{3}$)C.y=sin4xD.y=sinx

分析 由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:将函数y=sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位,可得函数y=sin[2(x+$\frac{π}{6}$)-$\frac{π}{3}$]=sin2x的图象;
再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),则所得函数图象对应的解析式为y=sinx,
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.以直角坐标系的原点O为极点,x轴的正半轴建立坐标系,且两个坐标系取相等的单位长度.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{3}t\\ y=1+t\end{array}\right.$,(t是参数),圆C的极坐标方程为ρ=2.
(1)写出直线l及圆C的普通方程;
(2)设P(1,1),直线l与圆C相交于A,B,求||PA|-|PB||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个圆锥的体积是$\frac{π}{3}$,高是1,它的顶点和底面圆周在球O的球面上,则球O的表面积是(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.($\frac{3}{2}$)${\;}^{-\frac{1}{3}}$×(-$\frac{7}{6}$)0+8${\;}^{\frac{1}{4}}$×$\root{4}{2}$-$\sqrt{(-\frac{2}{3})^{\frac{2}{3}}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设复数z满足|z+$\frac{1}{z}$|≤2,则|z|的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设$a={log_4}3,b={log_{0.4}}3,c={(\frac{1}{2})^2}$则a,b,c的大小关系是(  )
A.b>a>cB.a>b>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1}&{(x≥0)}\\{-{x}^{2}+2x}&{(x<0)}\end{array}\right.$,则f(2)=3,若f(a)=1,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=tanωx(ω>0)的图象的相邻两支截直线y=2所得线段长为$\frac{π}{2}$,则f($\frac{π}{6}$)的值是(  )
A.-$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.阅读如图的程序框图,运行相应的程序则输出的K和S值分别为(  )
A.9,$\frac{4}{9}$B.11,$\frac{5}{11}$C.13,$\frac{6}{13}$D.15,$\frac{7}{15}$

查看答案和解析>>

同步练习册答案