精英家教网 > 高中数学 > 题目详情
4.设$a={log_4}3,b={log_{0.4}}3,c={(\frac{1}{2})^2}$则a,b,c的大小关系是(  )
A.b>a>cB.a>b>cC.c>a>bD.a>c>b

分析 根据对数函数和指数函数的单调性,比较它们与0和1的大小关系,从而得到答案.

解答 解:∵0=log41<a=log43<log44=1,
b=log0•43<log0•41=0,
0<c=$(\frac{1}{2})^{2}=\frac{1}{4}=(lo{g}_{4}2)^{2}<lo{g}_{4}2<lo{g}_{4}3$,
∴a>c>b.
故选:D.

点评 本题考查了对数值和指数值大小的比较,考查了对数函数的单调性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设n∈N*,函数f(x)=$\frac{lnx}{{x}^{n}}$,函数g(x)=$\frac{{e}^{x}}{{x}^{n}}$,x∈(0,+∞),
(1)当n=1时,写出函数y=f(x)-1零点个数,并说明理由;
(2)若曲线 y=f(x)与曲线 y=g(x)分别位于直线l:y=1的两侧,求n的所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输入的x的值为3,则输出的n的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足an>0,其前n项和Sn=$\frac{1}{6}$(an+1)(an+2),n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2(1+$\frac{1}{a{\;}_{n}}$),并记Tn为数列{bn}的前n项和,求证:3Tn>log2($\frac{a{\;}_{n}+3}{2}$),n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数y=sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位,再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),则所得函数图象对应的解析式为(  )
A.y=sin(x-$\frac{2π}{3}$)B.y=sin(x-$\frac{π}{3}$)C.y=sin4xD.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若sinθ+cosθ=$\frac{\sqrt{5}}{5}$,θ∈[0,π],则tanθ=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2.
(Ⅰ)分别写出C1的普通方程,C2的直角坐标方程.
(Ⅱ)已知M、N分别为曲线C1的上、下顶点,点P为曲线C2上任意一点,求|PM|+|PN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,曲线C:$\left\{\begin{array}{l}{x=2t}\\{y=4{t}^{2}-6}\end{array}\right.$(t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$θ=\frac{π}{3}$(p∈R),l与C相交于A,B两点
(1)写出直线l的参数方程和曲线C的普通方程
(2)设线段AB的中点为M,求点M的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法错误的是(  )
A.已知两个命题p,q,若p∧q为假命题,则p∨q也为假命题
B.实数a=0是直线ax-2y=1与2ax-2y=3平行的充要条件
C.“?x0∈R,使得x02+2x0+5=0“的否定是“?x∈R,都有x2+2x+5≠0“
D.命题p:?x∈R,x2+1≥1;命题q:?x∈R,x2-x+1≤0,则命题p∧(¬q)是真命题

查看答案和解析>>

同步练习册答案