精英家教网 > 高中数学 > 题目详情
13.在直角坐标系xOy中,曲线C:$\left\{\begin{array}{l}{x=2t}\\{y=4{t}^{2}-6}\end{array}\right.$(t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$θ=\frac{π}{3}$(p∈R),l与C相交于A,B两点
(1)写出直线l的参数方程和曲线C的普通方程
(2)设线段AB的中点为M,求点M的极坐标.

分析 (Ⅰ)将直线l的极坐标方程化为直角坐标方程,再化为参数方程,再将曲线C的参数方程消去参数化为的普通方程;
(Ⅱ)将$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$代入y=x2-6化简后,由韦达定理求出中点M所对应的参数,再点M的直角坐标和极坐标.

解答 解:(Ⅰ)由题意得,直线l的直角坐标方程是y=$\sqrt{3}$x,
则直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),
由$\left\{\begin{array}{l}{x=2t}\\{y=4{t}^{2}-6}\end{array}\right.$得,曲线C的普通方程是y=x2-6;
(Ⅱ)将$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$代入y=x2-6得,${t}^{2}-2\sqrt{3}t-24=0$,
则△=12+4×24=108>0,t1+t2=2$\sqrt{3}$,
所以$\frac{{t}_{1}+{t}_{2}}{2}=\sqrt{3}$,即中点M所对应的参数为$\sqrt{3}$,
所以点M的直角坐标是($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),
则点M的极坐标($\sqrt{3}$,$\frac{π}{3}$).

点评 本题考查参数方程、极坐标方程与普通方程的转化,以及点的直角坐标、极坐标间的互化,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知A>0,ω>0,若直线y=b(0<b<A)与函数f(x)=Asin(ωx+φ)的图象的三个相邻交点的横坐标分别是1,3,7,则φ可取(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{3}$D.$\frac{11π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设$a={log_4}3,b={log_{0.4}}3,c={(\frac{1}{2})^2}$则a,b,c的大小关系是(  )
A.b>a>cB.a>b>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若直线y=kx与曲线y=x2+x所围成的封闭图形的面积为$\frac{1}{12}$,则k=1+$\frac{\root{3}{4}}{2}$或1-$\frac{\root{3}{4}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=tanωx(ω>0)的图象的相邻两支截直线y=2所得线段长为$\frac{π}{2}$,则f($\frac{π}{6}$)的值是(  )
A.-$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若某个几何体的三视图如下(单位:cm),则这个几何体的体积是(  )
A.$\frac{4000}{3}c{m}^{3}$B.$\frac{8000}{3}c{m}^{3}$C.2000cm3D.4000cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列两个命题:命题p1:?a,b∈(0,+∞),当a+b=1时,$\frac{1}{a}$+$\frac{1}{b}$=4;命题p2:函数y=ln$\frac{1-x}{1+x}$是偶函数.则下列命题是真命题的是(  )
A.p1∧p2B.p1∧(¬p2C.(¬p1)∨p2D.(¬p1)∨(¬p2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.动点P(x,y)到定点F(1,0)的距离与它到定直线l:x=4的距离之比为$\frac{1}{2}$.
(Ⅰ) 求动点P的轨迹C的方程;
(Ⅱ) 已知定点A(-2,0),B(2,0),动点Q(4,t)在直线l上,作直线AQ与轨迹C的另一个交点为M,作直线BQ与轨迹C的另一个交点为N,证明:M,N,F三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{2x+3}{2x}$(x>0),{an}满足a1=1,an=f($\frac{1}{{a}_{n-1}}$),n≥2.
(1)求{an}的通项公式;
(2)求Sn=a1a2-a2a3+a3a4+…+(-1)n-1anan+1

查看答案和解析>>

同步练习册答案