【题目】椭圆规是画椭圆的一种工具,如图1所示,在十字形滑槽上各有一个活动滑标
,
,有一根旋杆将两个滑标连成一体,
,
为旋杆上的一点,且在
,
两点之间,且
,当滑标
在滑槽
内作往复运动,滑标
在滑槽
内随之运动时,将笔尖放置于
处可画出椭圆,记该椭圆为
.如图2所示,设
与
交于点
,以
所在的直线为
轴,以
所在的直线为
轴,建立平面直角坐标系.
![]()
(1)求椭圆
的方程;
(2)设
,
是椭圆
的左右顶点,点
为直线
上的动点,直线
,
分别交椭圆于
,
两点,求四边形
面积为
,求点
的坐标.
科目:高中数学 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征(
)和严重急性呼吸综合征(
)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(
)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.
某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n(
)份血液样本,有以下两种检验方式:
方式一:逐份检验,则需要检验n次.
方式二:混合检验,将其中k(
且
)份血液样本分别取样混合在一起检验.
若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为
.
假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(
).现取其中k(
且
)份血液样本,记采用逐份检验方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次数为
.
(1)若
,试求p关于k的函数关系式
;
(2)若p与干扰素计量
相关,其中
(
)是不同的正实数,
满足
且
(
)都有
成立.
(i)求证:数列
等比数列;
(ii)当
时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,
平面
,
,点
是矩形
内(含边界)的动点,且
,
,直线
与平面
所成的角为
.记点
的轨迹长度为
,则
______;当三棱锥
的体积最小时,三棱锥
的外接球的表面积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点.
![]()
(1)证明:EF∥平面PCD;
(2)求证:面PBD⊥面PAC;
(3)若PA=AB,求PD与平面PAC所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知点
,
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)设曲线
与曲线
相交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某餐厅通过查阅了最近5次食品交易会参会人数
(万人)与餐厅所用原材料数量
(袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数 | 13 | 9 | 8 | 10 | 12 |
原材料 | 32 | 23 | 18 | 24 | 28 |
(1)根据所给5组数据,求出
关于
的线性回归方程
.
(2)已知购买原材料的费用
(元)与数量
(袋)的关系为
,
投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润
销售收入
原材料费用).
参考公式:
,
.
参考数据:
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com