精英家教网 > 高中数学 > 题目详情
(2012•温州一模)已知函数f(x)=2x2-alnx
(1)若a=4,求函数f(x)的极小值;
(2)设函数g(x)=-cos2x,试问:在定义域内是否存在三个不同的自变量xi(i=1,2,3)使得f(xi)-g(xi)的值相等,若存在,请求出a的范围,若不存在,请说明理由?
分析:(1)由a=4,得函数f(x)的解析式,求出其导函数以及导数为0的根,通过比较两根的大小找到函数的单调区间,进而求出f(x)的极小值;
(2)若定义域内存在三个不同的自变量的取值xi(i=1,2,3),使得f(xi)-g(xi)的值恰好都相等,设f(xi)-g(xi)=m.(i=1,2,3),则对于某一实数m,方程f(x)-g(x)=m在(0,+∞)上有三个不等的实数,由此能求出在定义域内不存在三个不同的自变量的取值xi(i=1,2,3)使得f(xi)-g(xi)的值恰好都相等.
解答:解:(1)由已知得f′(x)=4x-
4
x
=
4(x2-1)
x
,xk.Com]
则当0<x<1时f'(x)<0,可得函数f(x)在(0,1)上是减函数,
当x>1时f′(x)>0,可得函数f(x)在(1,+∞)上是增函数,
故函数的极小值为f(1)=2;
(2)若存在,设f(xi)-g(xi)=m(i=1,2,3),则对于某一实数m,方程f(x)-g(x)=m在(0,+∞)上有三个不同的实数根,设F(x)=f(x)-g(x)-m=2x2-alnx+cos2x-m,
F′(x)=4x-
a
x
-2sin2x(x>0)
有两个不同的零点,即关于x的方程4x2-2xsin2x=a(x>0)有两个不同的解G(x)=4x2-2xsin2x(x>0),
则G'(x)=8x-2sin2x-4xcos2x=2(2x-sin2x)+4x(1-cos2x),
设h(x)=2x-sin2x,则h′(x)=2-2cos2x≥0,故h(x)在(0,+∞)上单调递增,
则当x>0时h(x)>h(0)=0,即2x>sin2x,
又1-cos2x>0,则G′(x)>0故G(x)在(0,+∞)上是增函数,
则a=4x2-2xsin2x(x>0)至多只有一个解,故不存.
方法二:关于方程4x-
a
x
-2sin2x=0(x>0)
的解,
当a≤0时,由方法一知2x>sin2x,此时方程无解;
当a>0时,由于H′(x)=4+
a
x2
-4cos2x>0

可以证明H(x)=4x-
a
x
-2sin2x(x>0)
是增函数,此方程最多有一个解,故不存在.
点评:本题考查函数的单调区间的求法,考查满足条件的实数的取值范围的求法.综合性强,难度大,具有一定的探索性.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•温州一模)已知函数f(x)满足f(x)=2f(
1
x
)
,当x∈[1,3]时,f(x)=lnx,若在区间[
1
3
,3]
内,函数g(x)=f(x)-ax,有三个不同的零点,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)如图,在矩形ABCD中,AB=8,BC=4,E,F,G,H分别为四边的中点,且都在坐标轴上,设
OP
OF
CQ
CF
(λ≠0).
(Ⅰ)求直线EP与GQ的交点M的轨迹Γ的方程;
(Ⅱ)过圆x2+y2=r2(0<r<2)上一点N作圆的切线与轨迹Γ交于S,T两点,若
NS
NT
+r2=0
,试求出r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)如图,在△ABC中,AD⊥BC,垂足为D,且BD:DC:AD=2:3:6.
(Ⅰ)求∠BAC的大小;
(Ⅱ)设E为AB的中点,已知△ABC的面积为15,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分、答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为
23
,则该学生在面试时得分的期望值为
15
15
分.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)若圆x2+y2-4x+2my+m+6=0与y轴的两个交点A,B位于原点的同侧,则实数m的取值范围是(  )

查看答案和解析>>

同步练习册答案