精英家教网 > 高中数学 > 题目详情
15.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率(  )
A.$\frac{1}{120}$B.$\frac{7}{40}$C.$\frac{11}{60}$D.$\frac{21}{40}$

分析 先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.

解答 解:∵在10件产品中,有3件一等品,7件二等品,
从这10件产品中任取3件,
基本事件总数n=${C}_{10}^{3}$=120,
取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m=${C}_{3}^{3}+{C}_{3}^{2}{C}_{7}^{1}$=22,
∴取出的3件产品中一等品件数多于二等品件数的概率p=$\frac{m}{n}$=$\frac{22}{120}$=$\frac{11}{60}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在平面直角坐标系中,A(-2,0),B(2,0),M(8,0),N(0,8),若$\overrightarrow{AP}$•$\overrightarrow{BP}$=5,$\overrightarrow{OQ}$=($\frac{1}{3}$-t)$\overrightarrow{OM}$+($\frac{2}{3}$+t)$\overrightarrow{ON}$(t为实数),则|$\overrightarrow{PQ}$|的最小值是(  )
A.4$\sqrt{2}$-3B.4$\sqrt{2}$+3C.4$\sqrt{2}$-1D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求实数m取什么值时,复平面内表示复数z=(m2-8m+15)+(m2-5m-14)i的点位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.海上两小岛A,B到海洋观察站C的距离都是10km,小岛A在观察站C的北偏东20°,小岛B在观察站C的南偏东40°,则A与B的距离是(  )
A.10kmB.$10\sqrt{2}km$C.$10\sqrt{3}km$D.20km

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若定义在(0,+∞)上的函数f(x)=2x+$\frac{a}{x}$在x=3时取得最小值,则a=18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列关于逻辑结构与流程图的说法中正确的是(  )
A.一个流程图一定会有顺序结构B.一个流程图一定含有条件结构
C.一个流程图一定含有循环结构D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若$\frac{1}{a}$+$\frac{1}{c}$=$\frac{2}{b}$,求证:∠B必为锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}的前n项和为Sn,公差d=$\frac{π}{8}$,当Sn取最小值时,n的最大值为10,则数列的首项a1的取值范围是(  )
A.$(-\frac{5π}{8}\;,\;\;-\frac{9π}{16}]$B.$(-\frac{5π}{4}\;,\;\;-\frac{9π}{8}]$C.$[-\frac{5π}{8}\;,\;\;-\frac{9π}{16}]$D.$[-\frac{5π}{4}\;,\;\;-\frac{9π}{8}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.关于x的二项式(ax-2)n的展开式中,二项式系数的和为128,所有项系数的和为1,则a=(  )
A.1B.-1C.3D.1或3

查看答案和解析>>

同步练习册答案