精英家教网 > 高中数学 > 题目详情
16.在△ABC中,角A,B,C的对边分别为a,b,c,A=$\frac{2π}{3}$,b=1,S△ABC=$\sqrt{3}$
(1)求a,c的值;
(2)求$sin(B+\frac{π}{6})$的值.

分析 (1)利用正弦定理以及三角形的面积求出c,通过余弦定理求解a.
(2)利用两角和与差的三角函数化简求解即可.

解答 解:(1)由A=$\frac{2π}{3}$,b=1,S△ABC=$\sqrt{3}$,可得$s=\frac{1}{2}bcsinA$=$\sqrt{3}$得c=4,
由余弦定理得a=$\sqrt{{b}^{2}+{c}^{2}-2bccosA}$,
∴$a=\sqrt{21}$---------------(5分)
(2)由正弦定理得sinB=$\frac{bsinA}{a}$,∴$sinB=\frac{{\sqrt{7}}}{14}$
因为A为钝角,所以$cosB=\frac{{3\sqrt{21}}}{14}$,
$sin(B+\frac{π}{6})$=$\frac{\sqrt{7}}{14}$×$\frac{\sqrt{3}}{2}$$-\frac{3\sqrt{21}}{14}×\frac{1}{2}$,
所以$sin(B+\frac{π}{6})=\frac{{\sqrt{21}}}{7}$--------------(10分)

点评 本题考查正弦定理以及余弦定理的应用,三角形的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-a|-|x+3|(a∈R).
(1)当a=-1时,解不等式f(x)≤1;
(2)若x∈[0,3]时,不等式f(x)≤4恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列对于函数f(x)=3+cos2x,x∈(0,3π)的判断正确的是(  )
A.函数f(x)的周期为π
B.对于?a∈R,函数f(x+a)都不可能为偶函数
C.?x0∈(0,3π),使f(x0)>4
D.函数f(x)在区间$[\frac{π}{2},\frac{5π}{4}]$内单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果实数x,y满足线性约束条件$\left\{\begin{array}{l}2x-y≤0\\ x-3y+5≥0\\ y≥1\end{array}\right.$,则z=x-y+1的最小值等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=|x|•ex(x≠0),其中e为自然对数的底数,关于x的方程$f(x)+\frac{2}{f(x)}-λ=0$有四个相异实根,则实数λ的取值范围是(  )
A.$({0,\frac{1}{e}})$B.$({2\sqrt{2},+∞})$C.$({e+\frac{2}{e},+∞})$D.$({2e+\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知不等式ln(x+1)-1≤ax+b对一切x>-1都成立,则$\frac{b}{a}$的最小值是(  )
A.e-1B.eC.1-e-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}是首项为2018,公比为2018的等比数列,设数列{$\frac{1}{lo{g}_{2018}{a}_{n}•lo{g}_{2018}{a}_{n+1}}$}的前n项和为Sn,则S1•S2•S3•…S519=$\frac{1}{520}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若圆锥的侧面展开图是半径为5、圆心角为$\frac{6π}{5}$的扇形,则该圆锥的体积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在所有的两位数中,个位数字大于十位数字的两位数的个数为(  )
A.18B.36C.72D.48

查看答案和解析>>

同步练习册答案