精英家教网 > 高中数学 > 题目详情
4.已知f(x)为奇函数,当x<0时,f(x)=ex+x2,则曲线y=f(x)在x=1处的切线斜率为$\frac{1}{e}$-2.

分析 设x>0,则-x<0,运用已知解析式和奇函数的定义,可得x>0的解析式,求得导数,代入x=1,计算即可得到所求切线的斜率.

解答 解:设x>0,则-x<0,f(-x)=e-x+x2
由f(x)为奇函数,可得f(-x)=-f(x),
即f(x)=-e-x-x2,x>0.
导数为f′(x)=e-x-2x,
则曲线y=f(x)在x=1处的切线斜率为$\frac{1}{e}$-2.
故答案为:$\frac{1}{e}$-2.

点评 本题考查函数的奇偶性的定义的运用:求解析式,考查导数的运用:求切线的斜率,求得解析式和导数是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.某中学举行升旗仪式,在坡度为15°的看台E点和看台的坡脚A点,分别测得旗杆顶部的仰角分别为30°和60°,量的看台坡脚A点到E点在水平线上的射影B点的距离为10cm,则旗杆的高CD的长是$10({3-\sqrt{3}})$m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设Sn是等差数列{an}的前n项和,且a2=3,S4=16,则S9的值为81.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.等比数列{an}中,若a5=1,a8=8,则公比q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设向量$\overrightarrow a$=(2,-6),$\overrightarrow b$=(-1,m),若$\overrightarrow a$∥$\overrightarrow b$,则实数m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,且A>0,ω>0,0<φ<π)的部分图象如图所示.
(1)求A,ω,φ的值;
(2)设θ为锐角,且f(θ)=-$\frac{3}{5}\sqrt{3}$,求f(θ-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么sin2θ的值为(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{23}{24}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=kx2-lnx,若f(x)>0在函数定义域内恒成立,则k的取值范围是(  )
A.$({\frac{1}{e},e})$B.$({\frac{1}{2e},\frac{1}{e}})$C.$({-∞,\frac{1}{2e}})$D.$({\frac{1}{2e},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.“tanx>0”是“sin2x>0“的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案