精英家教网 > 高中数学 > 题目详情
16.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根.若p和q一真一假,求m的取值范围.

分析 p真:$\left\{\begin{array}{l}{△>0}\\{m>0}\end{array}\right.$,解得m.q真:可得△=16(m-2)2-16<0,解得m范围.又p和q一真一假即可得出.

解答 解:p:方程x2+mx+1=0有两个不等的负根,则$\left\{\begin{array}{l}{△>0}\\{m>0}\end{array}\right.$,解得m>2.
q:方程4x2+4(m-2)x+1=0无实根.则△=16(m-2)2-16<0,解得1<m<3.
若p和q一真一假,∴$\left\{\begin{array}{l}{m>2}\\{m≤1或m≥3}\end{array}\right.$,或$\left\{\begin{array}{l}{m≤2}\\{1<m<3}\end{array}\right.$,
解得m≥3,或1<m≤2.
∴m的取值范围是(1,2]∪[3,+∞).

点评 本题考查了不等式的解法、方程的实数根与判别式的关系、简易逻辑的判定方法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数$f(x)=\left\{\begin{array}{l}(a-2)x-1,x≤1\\{a^{x-1}},x>1\end{array}\right.$若f(x)在(-∞,+∞)上单调递增,则实数a的取值范围为(2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b是正实数,求证:$\frac{a}{{b}^{2}}$+$\frac{3b}{{a}^{2}}$≥$\frac{5}{a}$-$\frac{1}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a=4${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{4}}$$\frac{1}{3}$,c=log3$\frac{1}{4}$,则(  )
A.a>b>cB.b>c>aC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.满足{a,b,c}⊆B⊆{a,b,c,d,e,f}的集合B的个数是(  )
A.4B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图是古希腊数学家阿基米德墓碑上的图案,圆柱内有一个内切球,球的直径恰好等于圆柱的高,此时球与圆柱的体积之比为2:3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow{BC}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),则∠ABC=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2016年7月23日至24日,本年度第三次二十国集团(G20)财长和央行行长会议在四川省省会成都举行,业内调查机构i Research (艾瑞咨询)在成都市对[25,55]岁的人群中随机抽取n人进行了一次“消费”生活习惯是否符合理财观念的调查,若消费习惯符合理财观念的称为“经纪人”,否则则称为“非经纪人”.则如表统计表和各年龄段人数频率分布直方图
组数分组经纪人的人数占本组
的频率
第一组[25,30)1200.6
第二组[30,35)195P
第三组[35,40)1000.5
第四组[40,45)a0.4
第五组[45,50)300.3
第六组[50,55]150.3
(Ⅰ)补全频率分布直方图并求n,a,p的值;
(Ⅱ)根据频率分布直方图估计众数、中位数和平均数(结果保留三位有效数字);
(Ⅲ)从年龄在[40,55]的三组“经纪人”中采用分层抽样法抽取7人站成一排照相,相同年龄段的人必须站在一起,则有多少种不同的站法?请用数字作答.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)为定义在R上的奇函数,当x>0时,f(x)=log3(1+x),则f(-2)=-1.

查看答案和解析>>

同步练习册答案