精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知数列{an}的前n项和为Sn, 且满足条件:4S n =+ 4n – 1 , nÎN*.
(1) 证明:(a n– 2)2="0" (n ³ 2);(2) 满足条件的数列不惟一,试至少求出数列{an}的的3个不同的通项公式 .
(2) 当a1 =1且a n + an – 1 = 2时,得an ="1. " 2)当a1 =1且a n – a n – 1 =" 2" 时,得an =" 2n–1" .
3)当a1 =3且a n – a n – 1 =" 2" 时,得an =" 2n" + 1 .     4)当a1 =3且a n + an – 1 = 2时,得an =2(–1)n+ 1 + 1.
(1) 由条件4S n =+ 4n – 1 , nÎN*.得4S n – 1 =+ 4(n – 1 ) – 1,
相减得:4a n  =  + 4,化成–4a n+ 4–= 0,
∴ (a n– 2)2="0" .     4分
(2) 由(1)得:(a n –2 + an – 1 )(a n –2 – a n – 1 ) =" 0∴" a n + an – 1 =" 2 " 或a n – a n – 1 =" 2" . 2分
在4S n =+ 4n – 1中,令n = 1,得4a1 =+ 4 – 1,解得:a1 =1或 a1 ="3. " 2分
分四种情况:
1)当a1 =1且a n + an – 1 = 2时,得an =1.
2)当a1 =1且a n – a n – 1 =" 2" 时,得an =" 2n–1" .
3)当a1 =3且a n – a n – 1 =" 2" 时,得an =" 2n" + 1 .
4)当a1 =3且a n + an – 1 = 2时,得an =2(–1)n+ 1 + 1. 每个1分,有3个即可
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
设数列满足为实数
(Ⅰ)证明:对任意成立的充分必要条件是
(Ⅱ)设,证明:;
(Ⅲ)设,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知分别以为公差的等差数列,,满足.(Ⅰ)若,且存在正整数,使得,求的最小值;(Ⅱ)若且数列,的前项满足,求 的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
设数列满足.数列满足是非零整数,且对任意的正整数和自然数,都有
(1)求数列的通项公式;
(2)记,求数列的前项和

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16满分)设正项数列的前项和为为非零常数.已知对任意正整数,当时,总成立.
(1)证明:数列是等比数列;(2) 若正整数成等差数列,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知数列满足
(1)求数列的通项公式;
(2)求数列的通项公式;
(3)数列满足,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知数列的各项均是正数,其前项和为,满足,其中为正常数,且(1)求数列的通项公式;(2)设,数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个三角形的三个内角A、B、C成等差数列,那么tan(A+C)的值是(  )
A.
3
B.-
3
C.-
3
3
D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等比数列的前n项和为,且4,2成等差数列。若=1,则="(    " )
A.7 B.8C.15D.16

查看答案和解析>>

同步练习册答案