6£®¶ÔÓÚÎÞÇîÊýÁÐ{an}Óë{bn}£¬¼ÇA={x|x=an£¬n¡ÊN*}£¬B={x|x=bn£¬n¡ÊN*}£¬ÈôͬʱÂú×ãÌõ¼þ£º¢Ù{an}£¬{bn}¾ùµ¥µ÷µÝÔö£»¢ÚA¡ÉB=∅ÇÒA¡ÈB=N*£¬Ôò³Æ{an}Óë{bn}ÊÇÎÞÇ²¹ÊýÁУ®
£¨1£©Èôan=2n-1£¬bn=4n-2£¬ÅжÏ{an}Óë{bn}ÊÇ·ñΪÎÞÇ²¹ÊýÁУ¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èôan=2nÇÒ{an}Óë{bn}ÊÇÎÞÇ²¹ÊýÁУ¬ÇóÊýÁ¿{bn}µÄǰ16ÏîµÄºÍ£»
£¨3£©Èô{an}Óë{bn}ÊÇÎÞÇ²¹ÊýÁУ¬{an}ΪµÈ²îÊýÁÐÇÒa16=36£¬Çó{an}Óë{bn}µÄͨÏʽ£®

·ÖÎö £¨1£©{an}Óë{bn}²»ÊÇÎÞÇ²¹ÊýÁУ®ÓÉ4∉A£¬4∉B£¬4∉A¡ÈB=N*£¬¼´¿ÉÅжϣ»
£¨2£©ÓÉan=2n£¬¿ÉµÃa4=16£¬a5=32£¬ÔÙÓÉж¨Òå¿ÉµÃb16=16+4=20£¬ÔËÓõȲîÊýÁеÄÇóºÍ¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½ËùÇóºÍ£»
£¨3£©ÔËÓõȲîÊýÁеÄͨÏʽ£¬½áºÏÊ×Ïî´óÓÚµÈÓÚ1£¬¿ÉµÃd=1»ò2£¬ÌÖÂÛd=1£¬2ÇóµÃͨÏʽ£¬½áºÏж¨Ò壬¼´¿ÉµÃµ½ËùÇóÊýÁеÄͨÏʽ£®

½â´ð ½â£º£¨1£©{an}Óë{bn}²»ÊÇÎÞÇ²¹ÊýÁУ®
ÀíÓÉ£ºÓÉan=2n-1£¬bn=4n-2£¬¿ÉµÃ4∉A£¬4∉B£¬
¼´ÓÐ4∉A¡ÈB=N*£¬¼´ÓÐ{an}Óë{bn}²»ÊÇÎÞÇ²¹ÊýÁУ»
£¨2£©ÓÉan=2n£¬¿ÉµÃa4=16£¬a5=32£¬
ÓÉ{an}Óë{bn}ÊÇÎÞÇ²¹ÊýÁУ¬¿ÉµÃb16=16+4=20£¬
¼´ÓÐÊýÁÐ{bn}µÄǰ16ÏîµÄºÍΪ
£¨1+2+3+¡­+20£©-£¨2+4+8+16£©=$\frac{1+20}{2}$¡Á20-30=180£»
£¨3£©Éè{an}Ϊ¹«²îΪd£¨dΪÕýÕûÊý£©µÄµÈ²îÊýÁÐÇÒa16=36£¬Ôòa1+15d=36£¬
ÓÉa1=36-15d¡Ý1£¬¿ÉµÃd=1»ò2£¬
Èôd=1£¬Ôòa1=21£¬an=n+20£¬bn=n£¨1¡Ün¡Ü20£©£¬
Óë{an}Óë{bn}ÊÇÎÞÇ²¹ÊýÁÐì¶Ü£¬ÉáÈ¥£»
Èôd=2£¬Ôòa1=6£¬an=2n+4£¬bn=$\left\{\begin{array}{l}{n£¬n¡Ü5}\\{2n-5£¬n£¾5}\end{array}\right.$£®
×ÛÉϿɵã¬an=2n+4£¬bn=$\left\{\begin{array}{l}{n£¬n¡Ü5}\\{2n-5£¬n£¾5}\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²éж¨ÒåµÄÀí½âºÍÔËÓ㬿¼²éµÈ²îÊýÁеÄͨÏʽºÍÇóºÍ¹«Ê½µÄÔËÓ㬿¼²éÔËËãºÍÍÆÀíÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®µÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒS3=39£¬a2=9£¬Ôò¹«±ÈqµÈÓÚ$\frac{1}{3}$»ò3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÓòΪRµÄżº¯Êý£¬µ±x¡Ü0ʱ£¬f£¨x£©=x2+2x£¬ÄÇô£¬²»µÈʽf£¨x+2£©£¼3µÄ½â¼¯ÊÇ{x|-5£¼x£¼1}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ä³³ÌÐò¿òͼÈçͼËùʾ£¬ÆäÖÐn¡ÊN*£¬Èô³ÌÐòÔËÐкó£¬Êä³öSµÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®$\frac{n£¨3n-1£©}{2}$B£®$\frac{£¨3n+2£©£¨n+1£©}{2}$C£®$\frac{£¨3n-2£©£¨n+1£©}{2}$D£®$\frac{£¨3n+2£©£¨n-1£©}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin2x+$\frac{3}{2}$sin2x£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨2£©ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èôf£¨$\frac{A}{2}$£©=$\sqrt{3}$£¬¡÷ABCµÄÃæ»ýΪ3$\sqrt{3}$£¬ÇóaµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈçͼËùʾ£¬Ö±Ïßl¾­¹ýÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãF£¬ÇÒÓëÅ×ÎïÏß½»ÓÚµãP£¬QÁ½µã£¬ÓÉP£¬Q·Ö±ð×÷Å×ÎïÏßµÄÇÐÏß½»ÓÚM£¬Èç¹û|PF|=a£¬|QF|=b£¬Ôò|MF|µÄֵΪ£¨¡¡¡¡£©
A£®a+bB£®$\frac{1}{2}£¨a+b£©$C£®abD£®$\sqrt{ab}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª±ß³¤Îª2µÄÕý·½ÐÎABCDµÄËĸö¶¥µãÔÚÇòOµÄÇòÃæÉÏ£¬ÇòOµÄ±íÃæ»ýΪ80¦Ð£¬ÔòOAÓëÆ½ÃæABCDËù³ÉµÄ½ÇµÄÓàÏÒֵΪ£¨¡¡¡¡£©
A£®$\frac{{3\sqrt{10}}}{10}$B£®$\frac{{\sqrt{10}}}{10}$C£®$\frac{{\sqrt{19}}}{19}$D£®$\frac{{\sqrt{30}}}{30}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èôf£¨x+1£©=2$\sqrt{f£¨x£©}$£¬ÆäÖÐx¡ÊN*£¬ÇÒf£¨1£©=10£¬Ôòf£¨x£©µÄ±í´ïʽÊÇf£¨x£©=4•£¨$\frac{5}{2}$£©${\;}^{{2}^{1-x}}$£¨x¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª$\overrightarrow m$=£¨cos¦Øx£¬$\sqrt{3}$cos£¨¦Øx+¦Ð£©£©£¬$\overrightarrow n$=£¨sin¦Øx£¬cos¦Øx£©£¬ÆäÖЦأ¾0£¬f£¨x£©=$\overrightarrow m$•$\overrightarrow n$£¬ÇÒf£¨x£©ÏàÁÚÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£®
£¨I£©Èôf£¨${\frac{¦Á}{2}}$£©=-$\frac{{\sqrt{3}}}{4}$£¬¦Á¡Ê£¨0£¬$\frac{¦Ð}{2}}$£©£¬Çócos¦ÁµÄÖµ£»
£¨¢ò£©½«º¯Êýy=f£¨x£©µÄͼÏóÉϸ÷µãµÄºá×ø±êÉ쳤µ½Ô­À´µÄ2±¶£¬×Ý×ø±ê²»±ä£¬È»ºóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬µÃµ½º¯Êýy=g£¨x£©µÄͼÏó£¬Çóº¯Êýy=g£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸