精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)=\left\{\begin{array}{l}2-{log_2}(-x+2),0≤x<2\\ 2-f(-x),-2<x<0\end{array}\right.$则|f(x)|≤2的解集为(  )
A.[0,1]B.(-2,1]C.$[-\frac{7}{4},2)$D.$[{-\frac{7}{4},1}]$

分析 求出f(x)的解析式,对x的范围进行讨论,根据对数的运算性质解出x.

解答 解:f(x)=$\left\{\begin{array}{l}{2-lo{g}_{2}(-x+2),0≤x<2}\\{lo{g}_{2}(x+2),-2<x<0}\end{array}\right.$,
(1)当0≤x<2时,令-2≤2-log2(-x+2)≤2,得0≤log2(-x+2)≤4,
∴1≤-x+2≤16,解得0≤x≤1;
(2)当-2<x<0时,令-2≤log2(x+2)≤2,得$\frac{1}{4}$≤x+2≤4,解得-$\frac{7}{4}$≤x<0,
综上,不等式|f(x)|≤2的解为[-$\frac{7}{4}$,1].
故选:D.

点评 本题考查了分段函数的解析式求解,对数的运算性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若a,b∈R,ab≠0,且a+b=1,则下列不等式中,恒成立的是(  )
A.a2b2≤$\frac{1}{16}$B.a2+b2≥$\frac{1}{2}$C.(1+$\frac{1}{a}$)(1+$\frac{1}{b}$)≥9D.$\frac{1}{a}$+$\frac{1}{b}$≥4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.$\frac{{{{({1-i})}^2}}}{1+i}$的虚部为(  )
A.iB.-1C.-iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若双曲线M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别是F1,F2,以F1F2为直径的圆与双曲线M相交于点P,且|PF1|=16,|PF2|=12,则双曲线M的离心率为(  )
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(-2,1)$,则(  )
A.$\overrightarrow a∥\overrightarrow b$B.$\overrightarrow a⊥\overrightarrow b$C.$\overrightarrow a$与$\overrightarrow b$的夹角为60°D.$\overrightarrow a$与$\overrightarrow b$的夹角为30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,asinA+bsinB-csinC=asinB.
(Ⅰ)求角C的大小;
(Ⅱ)若D为AB中点,CD=1,延长CD到E,使CD=DE,设∠ACD=α,将四边形AEBC的面积S用α表示,并求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,CB=5,AD⊥BC交BC于点D,若CD=2时,则$\overrightarrow{CA}•\overrightarrow{CB}$=(  )
A.5B.2C.10D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正项等比数列{an}的公比q>1,且满足a2=6,a1a3+2a2a4+a3a5=900,设数列{an}的前n项和为Sn,若不等式λan≤1+Sn对一切n∈N*恒成立,则实数λ的最大值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,则|$\frac{2i}{1+i}$|=(  )
A.1B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案